Properties

Label 2-1200-1.1-c3-0-34
Degree $2$
Conductor $1200$
Sign $-1$
Analytic cond. $70.8022$
Root an. cond. $8.41440$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 13·7-s + 9·9-s − 6·11-s − 5·13-s + 78·17-s − 65·19-s + 39·21-s + 138·23-s − 27·27-s + 66·29-s − 299·31-s + 18·33-s + 214·37-s + 15·39-s + 360·41-s + 203·43-s + 78·47-s − 174·49-s − 234·51-s − 636·53-s + 195·57-s − 786·59-s + 467·61-s − 117·63-s − 217·67-s − 414·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.701·7-s + 1/3·9-s − 0.164·11-s − 0.106·13-s + 1.11·17-s − 0.784·19-s + 0.405·21-s + 1.25·23-s − 0.192·27-s + 0.422·29-s − 1.73·31-s + 0.0949·33-s + 0.950·37-s + 0.0615·39-s + 1.37·41-s + 0.719·43-s + 0.242·47-s − 0.507·49-s − 0.642·51-s − 1.64·53-s + 0.453·57-s − 1.73·59-s + 0.980·61-s − 0.233·63-s − 0.395·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1200\)    =    \(2^{4} \cdot 3 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(70.8022\)
Root analytic conductor: \(8.41440\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1200,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
good7 \( 1 + 13 T + p^{3} T^{2} \)
11 \( 1 + 6 T + p^{3} T^{2} \)
13 \( 1 + 5 T + p^{3} T^{2} \)
17 \( 1 - 78 T + p^{3} T^{2} \)
19 \( 1 + 65 T + p^{3} T^{2} \)
23 \( 1 - 6 p T + p^{3} T^{2} \)
29 \( 1 - 66 T + p^{3} T^{2} \)
31 \( 1 + 299 T + p^{3} T^{2} \)
37 \( 1 - 214 T + p^{3} T^{2} \)
41 \( 1 - 360 T + p^{3} T^{2} \)
43 \( 1 - 203 T + p^{3} T^{2} \)
47 \( 1 - 78 T + p^{3} T^{2} \)
53 \( 1 + 12 p T + p^{3} T^{2} \)
59 \( 1 + 786 T + p^{3} T^{2} \)
61 \( 1 - 467 T + p^{3} T^{2} \)
67 \( 1 + 217 T + p^{3} T^{2} \)
71 \( 1 - 360 T + p^{3} T^{2} \)
73 \( 1 - 286 T + p^{3} T^{2} \)
79 \( 1 + 272 T + p^{3} T^{2} \)
83 \( 1 - 6 p T + p^{3} T^{2} \)
89 \( 1 + p^{3} T^{2} \)
97 \( 1 - 511 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.233215057113962041448410594792, −8.019814081191554426939270477612, −7.25828701611279480605294335646, −6.37525160349942488595371699502, −5.65859881209199010729043775493, −4.74067969700779109860110539372, −3.67031190205928047663633085685, −2.66232830582804892453275086523, −1.20735769226286796617619360174, 0, 1.20735769226286796617619360174, 2.66232830582804892453275086523, 3.67031190205928047663633085685, 4.74067969700779109860110539372, 5.65859881209199010729043775493, 6.37525160349942488595371699502, 7.25828701611279480605294335646, 8.019814081191554426939270477612, 9.233215057113962041448410594792

Graph of the $Z$-function along the critical line