Properties

Label 2-1200-1.1-c3-0-0
Degree $2$
Conductor $1200$
Sign $1$
Analytic cond. $70.8022$
Root an. cond. $8.41440$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 30.4·7-s + 9·9-s − 31.4·11-s − 60.7·13-s − 121.·17-s + 14.4·19-s + 91.3·21-s − 13.6·23-s − 27·27-s − 76.0·29-s − 183.·31-s + 94.3·33-s − 37.3·37-s + 182.·39-s − 30.6·41-s − 327.·43-s + 449.·47-s + 583.·49-s + 363.·51-s − 301.·53-s − 43.3·57-s − 340.·59-s + 619.·61-s − 273.·63-s − 256.·67-s + 41.0·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.64·7-s + 0.333·9-s − 0.861·11-s − 1.29·13-s − 1.72·17-s + 0.174·19-s + 0.948·21-s − 0.124·23-s − 0.192·27-s − 0.486·29-s − 1.06·31-s + 0.497·33-s − 0.166·37-s + 0.748·39-s − 0.116·41-s − 1.16·43-s + 1.39·47-s + 1.70·49-s + 0.998·51-s − 0.782·53-s − 0.100·57-s − 0.752·59-s + 1.29·61-s − 0.547·63-s − 0.468·67-s + 0.0716·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1200\)    =    \(2^{4} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(70.8022\)
Root analytic conductor: \(8.41440\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1200,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1361202272\)
\(L(\frac12)\) \(\approx\) \(0.1361202272\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 \)
good7 \( 1 + 30.4T + 343T^{2} \)
11 \( 1 + 31.4T + 1.33e3T^{2} \)
13 \( 1 + 60.7T + 2.19e3T^{2} \)
17 \( 1 + 121.T + 4.91e3T^{2} \)
19 \( 1 - 14.4T + 6.85e3T^{2} \)
23 \( 1 + 13.6T + 1.21e4T^{2} \)
29 \( 1 + 76.0T + 2.43e4T^{2} \)
31 \( 1 + 183.T + 2.97e4T^{2} \)
37 \( 1 + 37.3T + 5.06e4T^{2} \)
41 \( 1 + 30.6T + 6.89e4T^{2} \)
43 \( 1 + 327.T + 7.95e4T^{2} \)
47 \( 1 - 449.T + 1.03e5T^{2} \)
53 \( 1 + 301.T + 1.48e5T^{2} \)
59 \( 1 + 340.T + 2.05e5T^{2} \)
61 \( 1 - 619.T + 2.26e5T^{2} \)
67 \( 1 + 256.T + 3.00e5T^{2} \)
71 \( 1 + 499.T + 3.57e5T^{2} \)
73 \( 1 + 19.1T + 3.89e5T^{2} \)
79 \( 1 + 257.T + 4.93e5T^{2} \)
83 \( 1 + 914.T + 5.71e5T^{2} \)
89 \( 1 + 1.05e3T + 7.04e5T^{2} \)
97 \( 1 - 521T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.523504360387039134612024273150, −8.739370632977086372810768079960, −7.41052576193236832772753119409, −6.91598415842556095753643954565, −6.05230932233422661370485244779, −5.20228698657375945226059444149, −4.23510767345722204067402401594, −3.07575325787667532296772635416, −2.14870256313771539122225034662, −0.17908911950567691482234778554, 0.17908911950567691482234778554, 2.14870256313771539122225034662, 3.07575325787667532296772635416, 4.23510767345722204067402401594, 5.20228698657375945226059444149, 6.05230932233422661370485244779, 6.91598415842556095753643954565, 7.41052576193236832772753119409, 8.739370632977086372810768079960, 9.523504360387039134612024273150

Graph of the $Z$-function along the critical line