L(s) = 1 | − 3i·3-s + (−10 − 5i)5-s + 10i·7-s − 9·9-s − 46·11-s + 34i·13-s + (−15 + 30i)15-s + 66i·17-s − 104·19-s + 30·21-s − 164i·23-s + (75 + 100i)25-s + 27i·27-s − 224·29-s − 72·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.894 − 0.447i)5-s + 0.539i·7-s − 0.333·9-s − 1.26·11-s + 0.725i·13-s + (−0.258 + 0.516i)15-s + 0.941i·17-s − 1.25·19-s + 0.311·21-s − 1.48i·23-s + (0.599 + 0.800i)25-s + 0.192i·27-s − 1.43·29-s − 0.417·31-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(−0.894−0.447i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 120, ( :3/2), −0.894−0.447i)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1+(10+5i)T |
good | 7 | 1−10iT−343T2 |
| 11 | 1+46T+1.33e3T2 |
| 13 | 1−34iT−2.19e3T2 |
| 17 | 1−66iT−4.91e3T2 |
| 19 | 1+104T+6.85e3T2 |
| 23 | 1+164iT−1.21e4T2 |
| 29 | 1+224T+2.43e4T2 |
| 31 | 1+72T+2.97e4T2 |
| 37 | 1+22iT−5.06e4T2 |
| 41 | 1−194T+6.89e4T2 |
| 43 | 1+108iT−7.95e4T2 |
| 47 | 1+480iT−1.03e5T2 |
| 53 | 1+286iT−1.48e5T2 |
| 59 | 1+426T+2.05e5T2 |
| 61 | 1−698T+2.26e5T2 |
| 67 | 1−328iT−3.00e5T2 |
| 71 | 1−188T+3.57e5T2 |
| 73 | 1−740iT−3.89e5T2 |
| 79 | 1+1.16e3T+4.93e5T2 |
| 83 | 1+412iT−5.71e5T2 |
| 89 | 1+1.20e3T+7.04e5T2 |
| 97 | 1+1.38e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.65682500324660206166449716274, −11.48940014617112979277166926438, −10.51552337640630528027926206114, −8.809327550622403946182273586564, −8.166901377964906849844234471551, −6.95631103962713017950960523055, −5.55531328262322641620521993255, −4.11131109584874450519352108659, −2.23215940033862635561626329548, 0,
2.94179454888193875562430667260, 4.21276455999393334017156306189, 5.55542996319191192670459700853, 7.29610982458847357039143586029, 8.032976968043496686889291818206, 9.506714390261479503630820251213, 10.70284126557561858924728749851, 11.17132808459488361828960735804, 12.57887120014640073013862625935