L(s) = 1 | + 3i·3-s + (−0.178 − 11.1i)5-s + 35.0i·7-s − 9·9-s + 25.6·11-s + 37.6i·13-s + (33.5 − 0.536i)15-s + 95.7i·17-s − 50.8·19-s − 105.·21-s + 110. i·23-s + (−124. + 4i)25-s − 27i·27-s + 54.5·29-s + 198.·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.0160 − 0.999i)5-s + 1.89i·7-s − 0.333·9-s + 0.702·11-s + 0.803i·13-s + (0.577 − 0.00923i)15-s + 1.36i·17-s − 0.614·19-s − 1.09·21-s + 1.00i·23-s + (−0.999 + 0.0320i)25-s − 0.192i·27-s + 0.349·29-s + 1.14·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0160 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.0160 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.00016 + 1.01629i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00016 + 1.01629i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3iT \) |
| 5 | \( 1 + (0.178 + 11.1i)T \) |
good | 7 | \( 1 - 35.0iT - 343T^{2} \) |
| 11 | \( 1 - 25.6T + 1.33e3T^{2} \) |
| 13 | \( 1 - 37.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 95.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 50.8T + 6.85e3T^{2} \) |
| 23 | \( 1 - 110. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 54.5T + 2.43e4T^{2} \) |
| 31 | \( 1 - 198.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 266. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 103.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 108iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 597. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 305. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 223.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 485.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 876. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 585.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 1.13e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 685.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 305. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 887.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 556. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.05192109501944838396503415050, −12.11807439073390823992758252608, −11.48527701061669095071560294147, −9.831280694064448654710245180772, −8.905456424066426732818790223438, −8.404399285178460973213610555870, −6.24877512724909560348703093536, −5.29910222218419789012278081000, −3.98283864078735772869535659546, −1.98614592785421455403547198093,
0.78487325745986751004655743653, 2.95304287587602149070490726955, 4.38897258711049096191606133481, 6.43602118167436456770529261870, 7.11271283942209307565796333633, 8.075174455443012467585554249264, 9.856823163376597715731293943724, 10.67781277471578965879239303960, 11.56167035025881223762813448658, 12.90145817088641617253109624584