L(s) = 1 | + (−2.80 + 0.363i)2-s + (3.73 − 3.61i)3-s + (7.73 − 2.03i)4-s + (−2.66 + 10.8i)5-s + (−9.15 + 11.4i)6-s − 26.3·7-s + (−20.9 + 8.53i)8-s + (0.853 − 26.9i)9-s + (3.52 − 31.4i)10-s + 37.4i·11-s + (21.4 − 35.5i)12-s − 30.8·13-s + (73.8 − 9.57i)14-s + (29.3 + 50.1i)15-s + (55.6 − 31.5i)16-s − 54.0·17-s + ⋯ |
L(s) = 1 | + (−0.991 + 0.128i)2-s + (0.718 − 0.695i)3-s + (0.966 − 0.254i)4-s + (−0.238 + 0.971i)5-s + (−0.622 + 0.782i)6-s − 1.42·7-s + (−0.926 + 0.377i)8-s + (0.0315 − 0.999i)9-s + (0.111 − 0.993i)10-s + 1.02i·11-s + (0.517 − 0.855i)12-s − 0.658·13-s + (1.41 − 0.182i)14-s + (0.504 + 0.863i)15-s + (0.869 − 0.493i)16-s − 0.770·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 - 0.609i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.793 - 0.609i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.107287 + 0.315801i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.107287 + 0.315801i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.80 - 0.363i)T \) |
| 3 | \( 1 + (-3.73 + 3.61i)T \) |
| 5 | \( 1 + (2.66 - 10.8i)T \) |
good | 7 | \( 1 + 26.3T + 343T^{2} \) |
| 11 | \( 1 - 37.4iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 30.8T + 2.19e3T^{2} \) |
| 17 | \( 1 + 54.0T + 4.91e3T^{2} \) |
| 19 | \( 1 + 4.70T + 6.85e3T^{2} \) |
| 23 | \( 1 - 129. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 230.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 123. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 349.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 74.8iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 364. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 45.7iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 682. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 256. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 435. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 862. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 366.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 215. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 340. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 605.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 517. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.44e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.30829355614916009717298802764, −12.36618863162219233389018709150, −11.22997690064226830232576704341, −9.781303622328604896882767054128, −9.428988937544831428250940994298, −7.79639071143960963788572039936, −7.04476492639171968270027678413, −6.30333512571246476411855801100, −3.35949440418777668274287292707, −2.19734199452398271760378449969,
0.20185989247542140925974150557, 2.62162550851288171926658322204, 3.99395356469170939105476339018, 5.91999431233180023122357052053, 7.47738882025109264166447331254, 8.694304580940633455214773014814, 9.239323801054179372515518876786, 10.14704323953590185144443593507, 11.28737798667626105595838983620, 12.62516453249140173841957261453