L(s) = 1 | + (−2.73 + 0.732i)2-s + (−2.64 − 4.47i)3-s + (6.92 − 4.00i)4-s + (10.4 + 3.92i)5-s + (10.4 + 10.2i)6-s + 4.10·7-s + (−15.9 + 16.0i)8-s + (−13.0 + 23.6i)9-s + (−31.4 − 3.06i)10-s − 5.96i·11-s + (−36.2 − 20.4i)12-s + 33.0·13-s + (−11.2 + 3.00i)14-s + (−10.0 − 57.2i)15-s + (31.9 − 55.4i)16-s + 50.6·17-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.259i)2-s + (−0.508 − 0.861i)3-s + (0.865 − 0.500i)4-s + (0.936 + 0.351i)5-s + (0.714 + 0.699i)6-s + 0.221·7-s + (−0.706 + 0.707i)8-s + (−0.483 + 0.875i)9-s + (−0.995 − 0.0968i)10-s − 0.163i·11-s + (−0.871 − 0.491i)12-s + 0.705·13-s + (−0.213 + 0.0573i)14-s + (−0.173 − 0.984i)15-s + (0.498 − 0.866i)16-s + 0.722·17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.819+0.573i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(0.819+0.573i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.819+0.573i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), 0.819+0.573i)
|
Particular Values
L(2) |
≈ |
1.03344−0.325511i |
L(21) |
≈ |
1.03344−0.325511i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.73−0.732i)T |
| 3 | 1+(2.64+4.47i)T |
| 5 | 1+(−10.4−3.92i)T |
good | 7 | 1−4.10T+343T2 |
| 11 | 1+5.96iT−1.33e3T2 |
| 13 | 1−33.0T+2.19e3T2 |
| 17 | 1−50.6T+4.91e3T2 |
| 19 | 1−74.1T+6.85e3T2 |
| 23 | 1+184.iT−1.21e4T2 |
| 29 | 1+98.3T+2.43e4T2 |
| 31 | 1+192.iT−2.97e4T2 |
| 37 | 1−350.T+5.06e4T2 |
| 41 | 1+292.iT−6.89e4T2 |
| 43 | 1−80.8iT−7.95e4T2 |
| 47 | 1+63.1iT−1.03e5T2 |
| 53 | 1+178.iT−1.48e5T2 |
| 59 | 1−479.iT−2.05e5T2 |
| 61 | 1−635.iT−2.26e5T2 |
| 67 | 1−288.iT−3.00e5T2 |
| 71 | 1−1.06e3T+3.57e5T2 |
| 73 | 1−980.iT−3.89e5T2 |
| 79 | 1+804.iT−4.93e5T2 |
| 83 | 1+300.T+5.71e5T2 |
| 89 | 1−1.11e3iT−7.04e5T2 |
| 97 | 1+1.21e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.86133507144015835753011783058, −11.59054176470156419456473369895, −10.78441107859683661267410107251, −9.759452689137890556765908111473, −8.487154224067568933786365349409, −7.40749976938781413663367423877, −6.31215640547608428652997393740, −5.53472971034587753049075188206, −2.47408219385506604658810368051, −1.02980194465050749378002030977,
1.29386079228892506296343253379, 3.36130179326631872327721562395, 5.25227002745845170794244817513, 6.33901104706569913996485301887, 7.949601423614781140633791711954, 9.332743087569820196407024533259, 9.722797264566070273995417260856, 10.87468671666714076527953951681, 11.68214318980568211859748274218, 12.84938008804796850199110568112