L(s) = 1 | + (−2.22 + 1.74i)2-s + (1.34 − 5.01i)3-s + (1.88 − 7.77i)4-s + (10.3 + 4.10i)5-s + (5.78 + 13.5i)6-s + (2.75 − 2.75i)7-s + (9.39 + 20.5i)8-s + (−23.3 − 13.5i)9-s + (−30.2 + 9.05i)10-s + 18.4·11-s + (−36.4 − 19.9i)12-s + (22.4 − 22.4i)13-s + (−1.31 + 10.9i)14-s + (34.5 − 46.6i)15-s + (−56.8 − 29.3i)16-s + (−73.3 − 73.3i)17-s + ⋯ |
L(s) = 1 | + (−0.786 + 0.618i)2-s + (0.258 − 0.965i)3-s + (0.236 − 0.971i)4-s + (0.930 + 0.367i)5-s + (0.393 + 0.919i)6-s + (0.148 − 0.148i)7-s + (0.415 + 0.909i)8-s + (−0.865 − 0.500i)9-s + (−0.958 + 0.286i)10-s + 0.504·11-s + (−0.877 − 0.479i)12-s + (0.478 − 0.478i)13-s + (−0.0250 + 0.208i)14-s + (0.595 − 0.803i)15-s + (−0.888 − 0.458i)16-s + (−1.04 − 1.04i)17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.722+0.691i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(0.722+0.691i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.722+0.691i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), 0.722+0.691i)
|
Particular Values
L(2) |
≈ |
1.28613−0.516296i |
L(21) |
≈ |
1.28613−0.516296i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.22−1.74i)T |
| 3 | 1+(−1.34+5.01i)T |
| 5 | 1+(−10.3−4.10i)T |
good | 7 | 1+(−2.75+2.75i)T−343iT2 |
| 11 | 1−18.4T+1.33e3T2 |
| 13 | 1+(−22.4+22.4i)T−2.19e3iT2 |
| 17 | 1+(73.3+73.3i)T+4.91e3iT2 |
| 19 | 1−86.5T+6.85e3T2 |
| 23 | 1+(−102.+102.i)T−1.21e4iT2 |
| 29 | 1+28.7iT−2.43e4T2 |
| 31 | 1−140.T+2.97e4T2 |
| 37 | 1+(242.+242.i)T+5.06e4iT2 |
| 41 | 1+52.3iT−6.89e4T2 |
| 43 | 1+(16.8−16.8i)T−7.95e4iT2 |
| 47 | 1+(298.+298.i)T+1.03e5iT2 |
| 53 | 1+(−49.3−49.3i)T+1.48e5iT2 |
| 59 | 1−361.iT−2.05e5T2 |
| 61 | 1−437.iT−2.26e5T2 |
| 67 | 1+(−754.−754.i)T+3.00e5iT2 |
| 71 | 1−554.iT−3.57e5T2 |
| 73 | 1+(564.+564.i)T+3.89e5iT2 |
| 79 | 1−621.iT−4.93e5T2 |
| 83 | 1+(−569.−569.i)T+5.71e5iT2 |
| 89 | 1−412.T+7.04e5T2 |
| 97 | 1+(653.−653.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.24787852608496276434837831736, −11.67822585670299031660426896155, −10.65810098434961579169637984615, −9.383999513095686745088965669021, −8.596740202453354593699811365274, −7.22619107384198812247499798490, −6.55537630254491392519749826086, −5.36586092517497772779553086927, −2.56022459497695182852188801658, −1.02228063156381216524218753183,
1.70227309349962013048501270453, 3.36841834654090656333125709920, 4.84480404106722713642841456167, 6.48928236069212048964770682377, 8.316126963835814612901255019645, 9.110368249834811458660029474468, 9.815360187264139890074832235742, 10.86391137435729807796113849974, 11.73378687776385411516384690854, 13.14323779089113085124926557646