| L(s) = 1 | − 3·3-s + 5·5-s − 16·7-s + 9·9-s − 28·11-s − 26·13-s − 15·15-s − 62·17-s − 68·19-s + 48·21-s − 208·23-s + 25·25-s − 27·27-s − 58·29-s + 160·31-s + 84·33-s − 80·35-s + 270·37-s + 78·39-s + 282·41-s + 76·43-s + 45·45-s − 280·47-s − 87·49-s + 186·51-s − 210·53-s − 140·55-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.447·5-s − 0.863·7-s + 1/3·9-s − 0.767·11-s − 0.554·13-s − 0.258·15-s − 0.884·17-s − 0.821·19-s + 0.498·21-s − 1.88·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.926·31-s + 0.443·33-s − 0.386·35-s + 1.19·37-s + 0.320·39-s + 1.07·41-s + 0.269·43-s + 0.149·45-s − 0.868·47-s − 0.253·49-s + 0.510·51-s − 0.544·53-s − 0.343·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + p T \) |
| 5 | \( 1 - p T \) |
| good | 7 | \( 1 + 16 T + p^{3} T^{2} \) |
| 11 | \( 1 + 28 T + p^{3} T^{2} \) |
| 13 | \( 1 + 2 p T + p^{3} T^{2} \) |
| 17 | \( 1 + 62 T + p^{3} T^{2} \) |
| 19 | \( 1 + 68 T + p^{3} T^{2} \) |
| 23 | \( 1 + 208 T + p^{3} T^{2} \) |
| 29 | \( 1 + 2 p T + p^{3} T^{2} \) |
| 31 | \( 1 - 160 T + p^{3} T^{2} \) |
| 37 | \( 1 - 270 T + p^{3} T^{2} \) |
| 41 | \( 1 - 282 T + p^{3} T^{2} \) |
| 43 | \( 1 - 76 T + p^{3} T^{2} \) |
| 47 | \( 1 + 280 T + p^{3} T^{2} \) |
| 53 | \( 1 + 210 T + p^{3} T^{2} \) |
| 59 | \( 1 - 196 T + p^{3} T^{2} \) |
| 61 | \( 1 - 742 T + p^{3} T^{2} \) |
| 67 | \( 1 - 836 T + p^{3} T^{2} \) |
| 71 | \( 1 + 504 T + p^{3} T^{2} \) |
| 73 | \( 1 + 1062 T + p^{3} T^{2} \) |
| 79 | \( 1 - 768 T + p^{3} T^{2} \) |
| 83 | \( 1 + 1052 T + p^{3} T^{2} \) |
| 89 | \( 1 + 726 T + p^{3} T^{2} \) |
| 97 | \( 1 + 1406 T + p^{3} T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.65760059337953416207064839065, −11.43243358108761490541169495900, −10.28368333344863433113576609443, −9.586141916400311529815677050143, −8.090936130157898123824434974931, −6.67574708106904230706622524370, −5.79001355009799720617357318416, −4.33451740750292325661504371555, −2.41249552983611067566692764530, 0,
2.41249552983611067566692764530, 4.33451740750292325661504371555, 5.79001355009799720617357318416, 6.67574708106904230706622524370, 8.090936130157898123824434974931, 9.586141916400311529815677050143, 10.28368333344863433113576609443, 11.43243358108761490541169495900, 12.65760059337953416207064839065