Properties

Label 2-120-1.1-c3-0-5
Degree $2$
Conductor $120$
Sign $-1$
Analytic cond. $7.08022$
Root an. cond. $2.66087$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5·5-s − 16·7-s + 9·9-s − 28·11-s − 26·13-s − 15·15-s − 62·17-s − 68·19-s + 48·21-s − 208·23-s + 25·25-s − 27·27-s − 58·29-s + 160·31-s + 84·33-s − 80·35-s + 270·37-s + 78·39-s + 282·41-s + 76·43-s + 45·45-s − 280·47-s − 87·49-s + 186·51-s − 210·53-s − 140·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.863·7-s + 1/3·9-s − 0.767·11-s − 0.554·13-s − 0.258·15-s − 0.884·17-s − 0.821·19-s + 0.498·21-s − 1.88·23-s + 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.926·31-s + 0.443·33-s − 0.386·35-s + 1.19·37-s + 0.320·39-s + 1.07·41-s + 0.269·43-s + 0.149·45-s − 0.868·47-s − 0.253·49-s + 0.510·51-s − 0.544·53-s − 0.343·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(7.08022\)
Root analytic conductor: \(2.66087\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 120,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 - p T \)
good7 \( 1 + 16 T + p^{3} T^{2} \)
11 \( 1 + 28 T + p^{3} T^{2} \)
13 \( 1 + 2 p T + p^{3} T^{2} \)
17 \( 1 + 62 T + p^{3} T^{2} \)
19 \( 1 + 68 T + p^{3} T^{2} \)
23 \( 1 + 208 T + p^{3} T^{2} \)
29 \( 1 + 2 p T + p^{3} T^{2} \)
31 \( 1 - 160 T + p^{3} T^{2} \)
37 \( 1 - 270 T + p^{3} T^{2} \)
41 \( 1 - 282 T + p^{3} T^{2} \)
43 \( 1 - 76 T + p^{3} T^{2} \)
47 \( 1 + 280 T + p^{3} T^{2} \)
53 \( 1 + 210 T + p^{3} T^{2} \)
59 \( 1 - 196 T + p^{3} T^{2} \)
61 \( 1 - 742 T + p^{3} T^{2} \)
67 \( 1 - 836 T + p^{3} T^{2} \)
71 \( 1 + 504 T + p^{3} T^{2} \)
73 \( 1 + 1062 T + p^{3} T^{2} \)
79 \( 1 - 768 T + p^{3} T^{2} \)
83 \( 1 + 1052 T + p^{3} T^{2} \)
89 \( 1 + 726 T + p^{3} T^{2} \)
97 \( 1 + 1406 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.65760059337953416207064839065, −11.43243358108761490541169495900, −10.28368333344863433113576609443, −9.586141916400311529815677050143, −8.090936130157898123824434974931, −6.67574708106904230706622524370, −5.79001355009799720617357318416, −4.33451740750292325661504371555, −2.41249552983611067566692764530, 0, 2.41249552983611067566692764530, 4.33451740750292325661504371555, 5.79001355009799720617357318416, 6.67574708106904230706622524370, 8.090936130157898123824434974931, 9.586141916400311529815677050143, 10.28368333344863433113576609443, 11.43243358108761490541169495900, 12.65760059337953416207064839065

Graph of the $Z$-function along the critical line