Properties

Label 2-120-1.1-c3-0-0
Degree $2$
Conductor $120$
Sign $1$
Analytic cond. $7.08022$
Root an. cond. $2.66087$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s + 4·7-s + 9·9-s + 72·11-s − 6·13-s + 15·15-s + 38·17-s + 52·19-s − 12·21-s + 152·23-s + 25·25-s − 27·27-s − 78·29-s + 120·31-s − 216·33-s − 20·35-s − 150·37-s + 18·39-s + 362·41-s − 484·43-s − 45·45-s + 280·47-s − 327·49-s − 114·51-s − 670·53-s − 360·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.215·7-s + 1/3·9-s + 1.97·11-s − 0.128·13-s + 0.258·15-s + 0.542·17-s + 0.627·19-s − 0.124·21-s + 1.37·23-s + 1/5·25-s − 0.192·27-s − 0.499·29-s + 0.695·31-s − 1.13·33-s − 0.0965·35-s − 0.666·37-s + 0.0739·39-s + 1.37·41-s − 1.71·43-s − 0.149·45-s + 0.868·47-s − 0.953·49-s − 0.313·51-s − 1.73·53-s − 0.882·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(120\)    =    \(2^{3} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(7.08022\)
Root analytic conductor: \(2.66087\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 120,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.399546814\)
\(L(\frac12)\) \(\approx\) \(1.399546814\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 + p T \)
good7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 72 T + p^{3} T^{2} \)
13 \( 1 + 6 T + p^{3} T^{2} \)
17 \( 1 - 38 T + p^{3} T^{2} \)
19 \( 1 - 52 T + p^{3} T^{2} \)
23 \( 1 - 152 T + p^{3} T^{2} \)
29 \( 1 + 78 T + p^{3} T^{2} \)
31 \( 1 - 120 T + p^{3} T^{2} \)
37 \( 1 + 150 T + p^{3} T^{2} \)
41 \( 1 - 362 T + p^{3} T^{2} \)
43 \( 1 + 484 T + p^{3} T^{2} \)
47 \( 1 - 280 T + p^{3} T^{2} \)
53 \( 1 + 670 T + p^{3} T^{2} \)
59 \( 1 - 696 T + p^{3} T^{2} \)
61 \( 1 - 222 T + p^{3} T^{2} \)
67 \( 1 + 4 T + p^{3} T^{2} \)
71 \( 1 - 96 T + p^{3} T^{2} \)
73 \( 1 - 178 T + p^{3} T^{2} \)
79 \( 1 + 8 p T + p^{3} T^{2} \)
83 \( 1 + 612 T + p^{3} T^{2} \)
89 \( 1 - 994 T + p^{3} T^{2} \)
97 \( 1 - 1634 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78240739006483210695379057508, −11.77549896986239482811044469711, −11.25768762133576898249486631491, −9.832276672292791059282854152810, −8.806986510515434571512739397121, −7.36329013318850519948758778500, −6.36727792563576377964668038282, −4.91426245679292978087357297984, −3.59203794348390889867775206923, −1.16190553529741305767696046865, 1.16190553529741305767696046865, 3.59203794348390889867775206923, 4.91426245679292978087357297984, 6.36727792563576377964668038282, 7.36329013318850519948758778500, 8.806986510515434571512739397121, 9.832276672292791059282854152810, 11.25768762133576898249486631491, 11.77549896986239482811044469711, 12.78240739006483210695379057508

Graph of the $Z$-function along the critical line