Properties

Label 2-11e2-11.5-c3-0-4
Degree $2$
Conductor $121$
Sign $0.780 - 0.625i$
Analytic cond. $7.13923$
Root an. cond. $2.67193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.37 − 4.24i)2-s + (6.03 + 4.38i)3-s + (−9.65 + 7.01i)4-s + (−2.61 + 8.04i)5-s + (10.2 − 31.6i)6-s + (−16.3 + 11.9i)7-s + (14.1 + 10.3i)8-s + (8.87 + 27.3i)9-s + 37.7·10-s − 89.0·12-s + (19.0 + 58.5i)13-s + (73.1 + 53.1i)14-s + (−51.1 + 37.1i)15-s + (−5.29 + 16.3i)16-s + (−21.4 + 65.9i)17-s + (103. − 75.3i)18-s + ⋯
L(s)  = 1  + (−0.487 − 1.50i)2-s + (1.16 + 0.844i)3-s + (−1.20 + 0.876i)4-s + (−0.233 + 0.719i)5-s + (0.700 − 2.15i)6-s + (−0.884 + 0.642i)7-s + (0.626 + 0.455i)8-s + (0.328 + 1.01i)9-s + 1.19·10-s − 2.14·12-s + (0.405 + 1.24i)13-s + (1.39 + 1.01i)14-s + (−0.879 + 0.639i)15-s + (−0.0827 + 0.254i)16-s + (−0.305 + 0.941i)17-s + (1.35 − 0.986i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.780 - 0.625i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.780 - 0.625i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121\)    =    \(11^{2}\)
Sign: $0.780 - 0.625i$
Analytic conductor: \(7.13923\)
Root analytic conductor: \(2.67193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{121} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 121,\ (\ :3/2),\ 0.780 - 0.625i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.18216 + 0.415429i\)
\(L(\frac12)\) \(\approx\) \(1.18216 + 0.415429i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
good2 \( 1 + (1.37 + 4.24i)T + (-6.47 + 4.70i)T^{2} \)
3 \( 1 + (-6.03 - 4.38i)T + (8.34 + 25.6i)T^{2} \)
5 \( 1 + (2.61 - 8.04i)T + (-101. - 73.4i)T^{2} \)
7 \( 1 + (16.3 - 11.9i)T + (105. - 326. i)T^{2} \)
13 \( 1 + (-19.0 - 58.5i)T + (-1.77e3 + 1.29e3i)T^{2} \)
17 \( 1 + (21.4 - 65.9i)T + (-3.97e3 - 2.88e3i)T^{2} \)
19 \( 1 + (5.80 + 4.21i)T + (2.11e3 + 6.52e3i)T^{2} \)
23 \( 1 - 50.3T + 1.21e4T^{2} \)
29 \( 1 + (-115. + 84.1i)T + (7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (78.7 + 242. i)T + (-2.41e4 + 1.75e4i)T^{2} \)
37 \( 1 + (272. - 197. i)T + (1.56e4 - 4.81e4i)T^{2} \)
41 \( 1 + (144. + 104. i)T + (2.12e4 + 6.55e4i)T^{2} \)
43 \( 1 + 55.7T + 7.95e4T^{2} \)
47 \( 1 + (-207. - 150. i)T + (3.20e4 + 9.87e4i)T^{2} \)
53 \( 1 + (-65.9 - 203. i)T + (-1.20e5 + 8.75e4i)T^{2} \)
59 \( 1 + (-645. + 468. i)T + (6.34e4 - 1.95e5i)T^{2} \)
61 \( 1 + (-52.1 + 160. i)T + (-1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 + 366.T + 3.00e5T^{2} \)
71 \( 1 + (241. - 743. i)T + (-2.89e5 - 2.10e5i)T^{2} \)
73 \( 1 + (-774. + 562. i)T + (1.20e5 - 3.69e5i)T^{2} \)
79 \( 1 + (-180. - 556. i)T + (-3.98e5 + 2.89e5i)T^{2} \)
83 \( 1 + (202. - 624. i)T + (-4.62e5 - 3.36e5i)T^{2} \)
89 \( 1 - 72.6T + 7.04e5T^{2} \)
97 \( 1 + (302. + 931. i)T + (-7.38e5 + 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95317970989242380852870911800, −11.80546397726331342283085656041, −10.82705905160071365512318493177, −9.906729058526152094221050144643, −9.162229535949142285945147199930, −8.451106257882439960868144908329, −6.54994305308216649839059789085, −4.08530943963301903054935621307, −3.25101156527675485447184684161, −2.22260230430884443377663432499, 0.67827274202671059337647605213, 3.18416487564280082301433743386, 5.18926603401687552959204944172, 6.76524875102902750739084272914, 7.37634937985421845372444672366, 8.497361878728584997488416569741, 8.928331328783762289190280234952, 10.29509436568366819635041098333, 12.38473456604276238677292637693, 13.26278375755228588180740044257

Graph of the $Z$-function along the critical line