Properties

Label 2-11e2-11.4-c3-0-16
Degree $2$
Conductor $121$
Sign $-0.859 - 0.511i$
Analytic cond. $7.13923$
Root an. cond. $2.67193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.99 − 1.44i)2-s + (−0.165 + 0.509i)3-s + (−0.595 − 1.83i)4-s + (1.24 − 0.902i)5-s + (1.06 − 0.776i)6-s + (−8.72 − 26.8i)7-s + (−7.55 + 23.2i)8-s + (21.6 + 15.7i)9-s − 3.78·10-s + 1.03·12-s + (−55.3 − 40.2i)13-s + (−21.5 + 66.2i)14-s + (0.254 + 0.782i)15-s + (36.2 − 26.3i)16-s + (−44.7 + 32.5i)17-s + (−20.3 − 62.6i)18-s + ⋯
L(s)  = 1  + (−0.704 − 0.512i)2-s + (−0.0318 + 0.0980i)3-s + (−0.0744 − 0.229i)4-s + (0.111 − 0.0807i)5-s + (0.0726 − 0.0528i)6-s + (−0.471 − 1.45i)7-s + (−0.334 + 1.02i)8-s + (0.800 + 0.581i)9-s − 0.119·10-s + 0.0248·12-s + (−1.18 − 0.858i)13-s + (−0.410 + 1.26i)14-s + (0.00437 + 0.0134i)15-s + (0.567 − 0.411i)16-s + (−0.638 + 0.464i)17-s + (−0.266 − 0.819i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121\)    =    \(11^{2}\)
Sign: $-0.859 - 0.511i$
Analytic conductor: \(7.13923\)
Root analytic conductor: \(2.67193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{121} (81, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 121,\ (\ :3/2),\ -0.859 - 0.511i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0754778 + 0.274429i\)
\(L(\frac12)\) \(\approx\) \(0.0754778 + 0.274429i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
good2 \( 1 + (1.99 + 1.44i)T + (2.47 + 7.60i)T^{2} \)
3 \( 1 + (0.165 - 0.509i)T + (-21.8 - 15.8i)T^{2} \)
5 \( 1 + (-1.24 + 0.902i)T + (38.6 - 118. i)T^{2} \)
7 \( 1 + (8.72 + 26.8i)T + (-277. + 201. i)T^{2} \)
13 \( 1 + (55.3 + 40.2i)T + (678. + 2.08e3i)T^{2} \)
17 \( 1 + (44.7 - 32.5i)T + (1.51e3 - 4.67e3i)T^{2} \)
19 \( 1 + (17.0 - 52.4i)T + (-5.54e3 - 4.03e3i)T^{2} \)
23 \( 1 + 178.T + 1.21e4T^{2} \)
29 \( 1 + (-34.9 - 107. i)T + (-1.97e4 + 1.43e4i)T^{2} \)
31 \( 1 + (57.2 + 41.6i)T + (9.20e3 + 2.83e4i)T^{2} \)
37 \( 1 + (65.0 + 200. i)T + (-4.09e4 + 2.97e4i)T^{2} \)
41 \( 1 + (-59.3 + 182. i)T + (-5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + 208.T + 7.95e4T^{2} \)
47 \( 1 + (-158. + 487. i)T + (-8.39e4 - 6.10e4i)T^{2} \)
53 \( 1 + (-303. - 220. i)T + (4.60e4 + 1.41e5i)T^{2} \)
59 \( 1 + (156. + 481. i)T + (-1.66e5 + 1.20e5i)T^{2} \)
61 \( 1 + (-379. + 275. i)T + (7.01e4 - 2.15e5i)T^{2} \)
67 \( 1 + 289.T + 3.00e5T^{2} \)
71 \( 1 + (-318. + 231. i)T + (1.10e5 - 3.40e5i)T^{2} \)
73 \( 1 + (-89.4 - 275. i)T + (-3.14e5 + 2.28e5i)T^{2} \)
79 \( 1 + (-137. - 99.6i)T + (1.52e5 + 4.68e5i)T^{2} \)
83 \( 1 + (-245. + 178. i)T + (1.76e5 - 5.43e5i)T^{2} \)
89 \( 1 + 1.14e3T + 7.04e5T^{2} \)
97 \( 1 + (519. + 377. i)T + (2.82e5 + 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.34540577902273934762568203941, −10.80952965642836890398263621596, −10.26514821655949190611619391809, −9.635019096220759988240783948589, −8.089065808008981408183493123663, −7.09208176169570766288990236883, −5.41184345114005326779803418549, −3.97669517237046364370192478555, −1.88497855500668893273697336733, −0.18082174694132606204805995383, 2.48253378755663771287027742699, 4.35613683702440141415796941300, 6.20243439271171807491121659020, 7.01698844805018158447396348763, 8.328218522642536460730558215762, 9.374186068608865504407074006679, 9.855754904757113229416629799020, 11.93410476432192405919944225600, 12.28732923166590034702909453240, 13.47524042166497500411841659582

Graph of the $Z$-function along the critical line