Properties

Label 2-11e2-1.1-c5-0-7
Degree $2$
Conductor $121$
Sign $1$
Analytic cond. $19.4064$
Root an. cond. $4.40527$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 15·3-s − 16·4-s − 19·5-s − 60·6-s − 10·7-s − 192·8-s − 18·9-s − 76·10-s + 240·12-s + 1.14e3·13-s − 40·14-s + 285·15-s − 256·16-s − 686·17-s − 72·18-s + 384·19-s + 304·20-s + 150·21-s + 3.70e3·23-s + 2.88e3·24-s − 2.76e3·25-s + 4.59e3·26-s + 3.91e3·27-s + 160·28-s + 5.42e3·29-s + 1.14e3·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.962·3-s − 1/2·4-s − 0.339·5-s − 0.680·6-s − 0.0771·7-s − 1.06·8-s − 0.0740·9-s − 0.240·10-s + 0.481·12-s + 1.88·13-s − 0.0545·14-s + 0.327·15-s − 1/4·16-s − 0.575·17-s − 0.0523·18-s + 0.244·19-s + 0.169·20-s + 0.0742·21-s + 1.46·23-s + 1.02·24-s − 0.884·25-s + 1.33·26-s + 1.03·27-s + 0.0385·28-s + 1.19·29-s + 0.231·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121\)    =    \(11^{2}\)
Sign: $1$
Analytic conductor: \(19.4064\)
Root analytic conductor: \(4.40527\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 121,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.264941339\)
\(L(\frac12)\) \(\approx\) \(1.264941339\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
good2 \( 1 - p^{2} T + p^{5} T^{2} \)
3 \( 1 + 5 p T + p^{5} T^{2} \)
5 \( 1 + 19 T + p^{5} T^{2} \)
7 \( 1 + 10 T + p^{5} T^{2} \)
13 \( 1 - 1148 T + p^{5} T^{2} \)
17 \( 1 + 686 T + p^{5} T^{2} \)
19 \( 1 - 384 T + p^{5} T^{2} \)
23 \( 1 - 3709 T + p^{5} T^{2} \)
29 \( 1 - 5424 T + p^{5} T^{2} \)
31 \( 1 + 6443 T + p^{5} T^{2} \)
37 \( 1 - 12063 T + p^{5} T^{2} \)
41 \( 1 - 1528 T + p^{5} T^{2} \)
43 \( 1 - 4026 T + p^{5} T^{2} \)
47 \( 1 - 7168 T + p^{5} T^{2} \)
53 \( 1 + 29862 T + p^{5} T^{2} \)
59 \( 1 + 6461 T + p^{5} T^{2} \)
61 \( 1 - 16980 T + p^{5} T^{2} \)
67 \( 1 - 29999 T + p^{5} T^{2} \)
71 \( 1 - 31023 T + p^{5} T^{2} \)
73 \( 1 + 1924 T + p^{5} T^{2} \)
79 \( 1 + 65138 T + p^{5} T^{2} \)
83 \( 1 - 102714 T + p^{5} T^{2} \)
89 \( 1 - 17415 T + p^{5} T^{2} \)
97 \( 1 - 66905 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.63879041091691841271865540068, −11.46506290015585117347447880725, −10.92731482771973942934849217901, −9.292915387969130485317709339640, −8.297502645634824596417323039163, −6.50331079120193744055727719021, −5.68476484897072429485486303605, −4.53475555779189861203758707271, −3.31740389842518171416597768036, −0.74129788734137256761143189721, 0.74129788734137256761143189721, 3.31740389842518171416597768036, 4.53475555779189861203758707271, 5.68476484897072429485486303605, 6.50331079120193744055727719021, 8.297502645634824596417323039163, 9.292915387969130485317709339640, 10.92731482771973942934849217901, 11.46506290015585117347447880725, 12.63879041091691841271865540068

Graph of the $Z$-function along the critical line