Properties

Label 2-1197-1.1-c1-0-5
Degree $2$
Conductor $1197$
Sign $1$
Analytic cond. $9.55809$
Root an. cond. $3.09161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.41·2-s + 3.82·4-s − 2·5-s + 7-s − 4.41·8-s + 4.82·10-s + 0.828·11-s + 2·13-s − 2.41·14-s + 2.99·16-s + 2·17-s − 19-s − 7.65·20-s − 1.99·22-s − 0.828·23-s − 25-s − 4.82·26-s + 3.82·28-s + 1.17·29-s + 4·31-s + 1.58·32-s − 4.82·34-s − 2·35-s − 3.65·37-s + 2.41·38-s + 8.82·40-s − 3.17·41-s + ⋯
L(s)  = 1  − 1.70·2-s + 1.91·4-s − 0.894·5-s + 0.377·7-s − 1.56·8-s + 1.52·10-s + 0.249·11-s + 0.554·13-s − 0.645·14-s + 0.749·16-s + 0.485·17-s − 0.229·19-s − 1.71·20-s − 0.426·22-s − 0.172·23-s − 0.200·25-s − 0.946·26-s + 0.723·28-s + 0.217·29-s + 0.718·31-s + 0.280·32-s − 0.828·34-s − 0.338·35-s − 0.601·37-s + 0.391·38-s + 1.39·40-s − 0.495·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1197\)    =    \(3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(9.55809\)
Root analytic conductor: \(3.09161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1197,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5952693544\)
\(L(\frac12)\) \(\approx\) \(0.5952693544\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good2 \( 1 + 2.41T + 2T^{2} \)
5 \( 1 + 2T + 5T^{2} \)
11 \( 1 - 0.828T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
23 \( 1 + 0.828T + 23T^{2} \)
29 \( 1 - 1.17T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 3.65T + 37T^{2} \)
41 \( 1 + 3.17T + 41T^{2} \)
43 \( 1 + 1.65T + 43T^{2} \)
47 \( 1 - 2.82T + 47T^{2} \)
53 \( 1 - 8.48T + 53T^{2} \)
59 \( 1 + 1.65T + 59T^{2} \)
61 \( 1 - 0.343T + 61T^{2} \)
67 \( 1 - 9.65T + 67T^{2} \)
71 \( 1 - 2T + 71T^{2} \)
73 \( 1 - 3.65T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 + 12.4T + 83T^{2} \)
89 \( 1 - 4.82T + 89T^{2} \)
97 \( 1 - 0.343T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.754540148871096877924651508361, −8.656017805116165239425085543624, −8.369685943797747321476913177203, −7.53700858005512005645345162457, −6.88204577691985339651385259809, −5.85316340100579703043124872102, −4.46330878806533582085496261448, −3.35320145066424040991691564756, −1.96864415524163815882775272782, −0.75133810446997368040563145778, 0.75133810446997368040563145778, 1.96864415524163815882775272782, 3.35320145066424040991691564756, 4.46330878806533582085496261448, 5.85316340100579703043124872102, 6.88204577691985339651385259809, 7.53700858005512005645345162457, 8.369685943797747321476913177203, 8.656017805116165239425085543624, 9.754540148871096877924651508361

Graph of the $Z$-function along the critical line