Properties

Label 2-1197-1.1-c1-0-27
Degree $2$
Conductor $1197$
Sign $-1$
Analytic cond. $9.55809$
Root an. cond. $3.09161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 7-s + 3·8-s − 2·11-s − 6·13-s − 14-s − 16-s + 8·17-s + 19-s + 2·22-s − 6·23-s − 5·25-s + 6·26-s − 28-s + 6·29-s − 5·32-s − 8·34-s − 2·37-s − 38-s + 2·41-s − 4·43-s + 2·44-s + 6·46-s − 2·47-s + 49-s + 5·50-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 0.377·7-s + 1.06·8-s − 0.603·11-s − 1.66·13-s − 0.267·14-s − 1/4·16-s + 1.94·17-s + 0.229·19-s + 0.426·22-s − 1.25·23-s − 25-s + 1.17·26-s − 0.188·28-s + 1.11·29-s − 0.883·32-s − 1.37·34-s − 0.328·37-s − 0.162·38-s + 0.312·41-s − 0.609·43-s + 0.301·44-s + 0.884·46-s − 0.291·47-s + 1/7·49-s + 0.707·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1197\)    =    \(3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(9.55809\)
Root analytic conductor: \(3.09161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1197,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.531956485631663698628909214600, −8.430578954476640378685449446378, −7.73615940684089542205213733052, −7.37777819527216520176153550324, −5.81925724207397802821543968215, −5.06660425760071494184917234451, −4.22513932740494609556728886018, −2.89641997824688480943384536269, −1.54904966216975383112386801468, 0, 1.54904966216975383112386801468, 2.89641997824688480943384536269, 4.22513932740494609556728886018, 5.06660425760071494184917234451, 5.81925724207397802821543968215, 7.37777819527216520176153550324, 7.73615940684089542205213733052, 8.430578954476640378685449446378, 9.531956485631663698628909214600

Graph of the $Z$-function along the critical line