Properties

Label 2-1183-7.2-c1-0-5
Degree $2$
Conductor $1183$
Sign $-0.0369 - 0.999i$
Analytic cond. $9.44630$
Root an. cond. $3.07348$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.689 + 1.19i)2-s + (−1.44 − 2.49i)3-s + (0.0491 + 0.0850i)4-s + (−0.402 + 0.697i)5-s + 3.97·6-s + (−1.26 − 2.32i)7-s − 2.89·8-s + (−2.65 + 4.59i)9-s + (−0.555 − 0.962i)10-s + (−2.63 − 4.56i)11-s + (0.141 − 0.245i)12-s + (3.64 + 0.0965i)14-s + 2.32·15-s + (1.89 − 3.28i)16-s + (0.280 + 0.485i)17-s + (−3.65 − 6.33i)18-s + ⋯
L(s)  = 1  + (−0.487 + 0.844i)2-s + (−0.831 − 1.44i)3-s + (0.0245 + 0.0425i)4-s + (−0.180 + 0.312i)5-s + 1.62·6-s + (−0.476 − 0.878i)7-s − 1.02·8-s + (−0.883 + 1.53i)9-s + (−0.175 − 0.304i)10-s + (−0.794 − 1.37i)11-s + (0.0408 − 0.0707i)12-s + (0.974 + 0.0257i)14-s + 0.599·15-s + (0.474 − 0.821i)16-s + (0.0679 + 0.117i)17-s + (−0.861 − 1.49i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0369 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0369 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1183\)    =    \(7 \cdot 13^{2}\)
Sign: $-0.0369 - 0.999i$
Analytic conductor: \(9.44630\)
Root analytic conductor: \(3.07348\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1183} (170, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1183,\ (\ :1/2),\ -0.0369 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3320029873\)
\(L(\frac12)\) \(\approx\) \(0.3320029873\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (1.26 + 2.32i)T \)
13 \( 1 \)
good2 \( 1 + (0.689 - 1.19i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (1.44 + 2.49i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (0.402 - 0.697i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (2.63 + 4.56i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (-0.280 - 0.485i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.92 - 5.06i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.802 + 1.38i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 2.28T + 29T^{2} \)
31 \( 1 + (1.73 + 3.01i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (0.620 - 1.07i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 0.927T + 41T^{2} \)
43 \( 1 - 4.44T + 43T^{2} \)
47 \( 1 + (-1.92 + 3.32i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (2.72 + 4.72i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-5.49 - 9.52i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.65 - 6.32i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-3.67 - 6.36i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 9.31T + 71T^{2} \)
73 \( 1 + (-2.50 - 4.33i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (5.68 - 9.84i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 5.81T + 83T^{2} \)
89 \( 1 + (2.50 - 4.33i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 10.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05025371236884504155632649628, −8.651434981613261744856198298874, −8.054088739968397355477023882173, −7.37545827540750636121016995409, −6.80313133668221708205607342047, −6.06509169514669609943779202610, −5.52790904934772857165143026940, −3.72601335999127520914279395972, −2.62863550895835917304731590597, −0.901249193178048842657407493096, 0.24113833971428378222284561804, 2.22055181130962297178887492890, 3.17030096731222524636751083045, 4.50324362819591283413664867917, 5.08021250155339643780371239573, 5.95967624550669621437233893060, 6.87885756266441681846338451328, 8.398118773162955927661189291273, 9.320318900844783567377127464236, 9.573734609136995519369204041690

Graph of the $Z$-function along the critical line