Properties

Label 2-1183-1.1-c1-0-39
Degree $2$
Conductor $1183$
Sign $1$
Analytic cond. $9.44630$
Root an. cond. $3.07348$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.710·2-s + 2.40·3-s − 1.49·4-s + 1.28·5-s + 1.71·6-s + 7-s − 2.48·8-s + 2.79·9-s + 0.916·10-s + 2.40·11-s − 3.60·12-s + 0.710·14-s + 3.10·15-s + 1.22·16-s + 3.90·17-s + 1.98·18-s + 5.89·19-s − 1.92·20-s + 2.40·21-s + 1.71·22-s − 6.32·23-s − 5.97·24-s − 3.33·25-s − 0.486·27-s − 1.49·28-s + 5.61·29-s + 2.20·30-s + ⋯
L(s)  = 1  + 0.502·2-s + 1.39·3-s − 0.747·4-s + 0.576·5-s + 0.698·6-s + 0.377·7-s − 0.877·8-s + 0.932·9-s + 0.289·10-s + 0.726·11-s − 1.03·12-s + 0.189·14-s + 0.801·15-s + 0.306·16-s + 0.946·17-s + 0.468·18-s + 1.35·19-s − 0.431·20-s + 0.525·21-s + 0.364·22-s − 1.31·23-s − 1.22·24-s − 0.667·25-s − 0.0936·27-s − 0.282·28-s + 1.04·29-s + 0.402·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1183 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1183\)    =    \(7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(9.44630\)
Root analytic conductor: \(3.07348\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1183,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.281484470\)
\(L(\frac12)\) \(\approx\) \(3.281484470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - T \)
13 \( 1 \)
good2 \( 1 - 0.710T + 2T^{2} \)
3 \( 1 - 2.40T + 3T^{2} \)
5 \( 1 - 1.28T + 5T^{2} \)
11 \( 1 - 2.40T + 11T^{2} \)
17 \( 1 - 3.90T + 17T^{2} \)
19 \( 1 - 5.89T + 19T^{2} \)
23 \( 1 + 6.32T + 23T^{2} \)
29 \( 1 - 5.61T + 29T^{2} \)
31 \( 1 + 2.20T + 31T^{2} \)
37 \( 1 - 5.11T + 37T^{2} \)
41 \( 1 - 7.78T + 41T^{2} \)
43 \( 1 - 0.289T + 43T^{2} \)
47 \( 1 + 1.27T + 47T^{2} \)
53 \( 1 + 13.6T + 53T^{2} \)
59 \( 1 - 4.03T + 59T^{2} \)
61 \( 1 + 4.60T + 61T^{2} \)
67 \( 1 + 7.57T + 67T^{2} \)
71 \( 1 + 7.22T + 71T^{2} \)
73 \( 1 - 15.0T + 73T^{2} \)
79 \( 1 + 9.30T + 79T^{2} \)
83 \( 1 - 1.36T + 83T^{2} \)
89 \( 1 - 0.899T + 89T^{2} \)
97 \( 1 + 15.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.529025836474126299504449375420, −9.120226310956534660879786635532, −8.079304047400714627085982855274, −7.69244698076115102142261904486, −6.22383857184382650748421920789, −5.46717335456348787719099972759, −4.35540056013681339051703945396, −3.58050740531579197913814825165, −2.71692763830758232490228673908, −1.40386554195830410873168783651, 1.40386554195830410873168783651, 2.71692763830758232490228673908, 3.58050740531579197913814825165, 4.35540056013681339051703945396, 5.46717335456348787719099972759, 6.22383857184382650748421920789, 7.69244698076115102142261904486, 8.079304047400714627085982855274, 9.120226310956534660879786635532, 9.529025836474126299504449375420

Graph of the $Z$-function along the critical line