# Properties

 Label 2-1176-1.1-c3-0-41 Degree $2$ Conductor $1176$ Sign $-1$ Analytic cond. $69.3862$ Root an. cond. $8.32984$ Motivic weight $3$ Arithmetic yes Rational no Primitive yes Self-dual yes Analytic rank $1$

# Related objects

## Dirichlet series

 L(s)  = 1 + 3·3-s − 16.6·5-s + 9·9-s − 49.2·11-s + 64.4·13-s − 49.8·15-s + 132.·17-s − 82.0·19-s + 82.0·23-s + 150.·25-s + 27·27-s + 157.·29-s − 185.·31-s − 147.·33-s − 51.9·37-s + 193.·39-s − 49.4·41-s + 313.·43-s − 149.·45-s − 553.·47-s + 397.·51-s − 619.·53-s + 817.·55-s − 246.·57-s − 712.·59-s − 287.·61-s − 1.07e3·65-s + ⋯
 L(s)  = 1 + 0.577·3-s − 1.48·5-s + 0.333·9-s − 1.34·11-s + 1.37·13-s − 0.857·15-s + 1.88·17-s − 0.990·19-s + 0.743·23-s + 1.20·25-s + 0.192·27-s + 1.00·29-s − 1.07·31-s − 0.779·33-s − 0.230·37-s + 0.794·39-s − 0.188·41-s + 1.11·43-s − 0.494·45-s − 1.71·47-s + 1.09·51-s − 1.60·53-s + 2.00·55-s − 0.572·57-s − 1.57·59-s − 0.603·61-s − 2.04·65-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1176$$    =    $$2^{3} \cdot 3 \cdot 7^{2}$$ Sign: $-1$ Analytic conductor: $$69.3862$$ Root analytic conductor: $$8.32984$$ Motivic weight: $$3$$ Rational: no Arithmetic: yes Character: $\chi_{1176} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$1$$ Selberg data: $$(2,\ 1176,\ (\ :3/2),\ -1)$$

## Particular Values

 $$L(2)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 - 3T$$
7 $$1$$
good5 $$1 + 16.6T + 125T^{2}$$
11 $$1 + 49.2T + 1.33e3T^{2}$$
13 $$1 - 64.4T + 2.19e3T^{2}$$
17 $$1 - 132.T + 4.91e3T^{2}$$
19 $$1 + 82.0T + 6.85e3T^{2}$$
23 $$1 - 82.0T + 1.21e4T^{2}$$
29 $$1 - 157.T + 2.43e4T^{2}$$
31 $$1 + 185.T + 2.97e4T^{2}$$
37 $$1 + 51.9T + 5.06e4T^{2}$$
41 $$1 + 49.4T + 6.89e4T^{2}$$
43 $$1 - 313.T + 7.95e4T^{2}$$
47 $$1 + 553.T + 1.03e5T^{2}$$
53 $$1 + 619.T + 1.48e5T^{2}$$
59 $$1 + 712.T + 2.05e5T^{2}$$
61 $$1 + 287.T + 2.26e5T^{2}$$
67 $$1 - 226.T + 3.00e5T^{2}$$
71 $$1 - 55.3T + 3.57e5T^{2}$$
73 $$1 - 799.T + 3.89e5T^{2}$$
79 $$1 + 120.T + 4.93e5T^{2}$$
83 $$1 + 857.T + 5.71e5T^{2}$$
89 $$1 + 377.T + 7.04e5T^{2}$$
97 $$1 + 1.26e3T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−8.707312247852519690672132551463, −8.001117510568684540145605911248, −7.75818323016069519669902529194, −6.65073168208905586420550762933, −5.48734439152422017381029548396, −4.48120742904490138475773559026, −3.51504485878016903196191823134, −2.96303401178177584700312212808, −1.31517955957237040639765132981, 0, 1.31517955957237040639765132981, 2.96303401178177584700312212808, 3.51504485878016903196191823134, 4.48120742904490138475773559026, 5.48734439152422017381029548396, 6.65073168208905586420550762933, 7.75818323016069519669902529194, 8.001117510568684540145605911248, 8.707312247852519690672132551463