Properties

Label 2-1176-1.1-c3-0-24
Degree $2$
Conductor $1176$
Sign $1$
Analytic cond. $69.3862$
Root an. cond. $8.32984$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6.95·5-s + 9·9-s + 43.9·11-s + 83.5·13-s − 20.8·15-s − 10.4·17-s − 4.27·19-s + 160.·23-s − 76.5·25-s − 27·27-s + 9.93·29-s + 133.·31-s − 131.·33-s − 357.·37-s − 250.·39-s + 127.·41-s + 343.·43-s + 62.6·45-s − 77.4·47-s + 31.3·51-s − 460.·53-s + 305.·55-s + 12.8·57-s − 272.·59-s + 51.3·61-s + 581.·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.622·5-s + 0.333·9-s + 1.20·11-s + 1.78·13-s − 0.359·15-s − 0.148·17-s − 0.0516·19-s + 1.45·23-s − 0.612·25-s − 0.192·27-s + 0.0635·29-s + 0.774·31-s − 0.694·33-s − 1.58·37-s − 1.02·39-s + 0.484·41-s + 1.21·43-s + 0.207·45-s − 0.240·47-s + 0.0859·51-s − 1.19·53-s + 0.749·55-s + 0.0298·57-s − 0.601·59-s + 0.107·61-s + 1.10·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1176\)    =    \(2^{3} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(69.3862\)
Root analytic conductor: \(8.32984\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1176} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1176,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.481246664\)
\(L(\frac12)\) \(\approx\) \(2.481246664\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 \)
good5 \( 1 - 6.95T + 125T^{2} \)
11 \( 1 - 43.9T + 1.33e3T^{2} \)
13 \( 1 - 83.5T + 2.19e3T^{2} \)
17 \( 1 + 10.4T + 4.91e3T^{2} \)
19 \( 1 + 4.27T + 6.85e3T^{2} \)
23 \( 1 - 160.T + 1.21e4T^{2} \)
29 \( 1 - 9.93T + 2.43e4T^{2} \)
31 \( 1 - 133.T + 2.97e4T^{2} \)
37 \( 1 + 357.T + 5.06e4T^{2} \)
41 \( 1 - 127.T + 6.89e4T^{2} \)
43 \( 1 - 343.T + 7.95e4T^{2} \)
47 \( 1 + 77.4T + 1.03e5T^{2} \)
53 \( 1 + 460.T + 1.48e5T^{2} \)
59 \( 1 + 272.T + 2.05e5T^{2} \)
61 \( 1 - 51.3T + 2.26e5T^{2} \)
67 \( 1 + 327.T + 3.00e5T^{2} \)
71 \( 1 + 571.T + 3.57e5T^{2} \)
73 \( 1 + 206.T + 3.89e5T^{2} \)
79 \( 1 - 923.T + 4.93e5T^{2} \)
83 \( 1 - 1.10e3T + 5.71e5T^{2} \)
89 \( 1 - 1.53e3T + 7.04e5T^{2} \)
97 \( 1 + 97.6T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.197534866637912540350401812402, −8.901296996395076179144369887469, −7.69841700765077879582001822177, −6.50476380347729766275051045196, −6.26132700207302473191366763184, −5.25076559377468637918874509963, −4.19321956922146612971512865053, −3.28003340764181301950034563965, −1.72321501766681537817668643494, −0.913338161695122326305420130911, 0.913338161695122326305420130911, 1.72321501766681537817668643494, 3.28003340764181301950034563965, 4.19321956922146612971512865053, 5.25076559377468637918874509963, 6.26132700207302473191366763184, 6.50476380347729766275051045196, 7.69841700765077879582001822177, 8.901296996395076179144369887469, 9.197534866637912540350401812402

Graph of the $Z$-function along the critical line