L(s) = 1 | − 3·3-s + 16.6·5-s + 9·9-s − 49.2·11-s − 64.4·13-s − 49.8·15-s − 132.·17-s + 82.0·19-s + 82.0·23-s + 150.·25-s − 27·27-s + 157.·29-s + 185.·31-s + 147.·33-s − 51.9·37-s + 193.·39-s + 49.4·41-s + 313.·43-s + 149.·45-s + 553.·47-s + 397.·51-s − 619.·53-s − 817.·55-s − 246.·57-s + 712.·59-s + 287.·61-s − 1.07e3·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.48·5-s + 0.333·9-s − 1.34·11-s − 1.37·13-s − 0.857·15-s − 1.88·17-s + 0.990·19-s + 0.743·23-s + 1.20·25-s − 0.192·27-s + 1.00·29-s + 1.07·31-s + 0.779·33-s − 0.230·37-s + 0.794·39-s + 0.188·41-s + 1.11·43-s + 0.494·45-s + 1.71·47-s + 1.09·51-s − 1.60·53-s − 2.00·55-s − 0.572·57-s + 1.57·59-s + 0.603·61-s − 2.04·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.805563699\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.805563699\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 16.6T + 125T^{2} \) |
| 11 | \( 1 + 49.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + 64.4T + 2.19e3T^{2} \) |
| 17 | \( 1 + 132.T + 4.91e3T^{2} \) |
| 19 | \( 1 - 82.0T + 6.85e3T^{2} \) |
| 23 | \( 1 - 82.0T + 1.21e4T^{2} \) |
| 29 | \( 1 - 157.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 185.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 51.9T + 5.06e4T^{2} \) |
| 41 | \( 1 - 49.4T + 6.89e4T^{2} \) |
| 43 | \( 1 - 313.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 553.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 619.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 712.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 287.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 226.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 55.3T + 3.57e5T^{2} \) |
| 73 | \( 1 + 799.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 120.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 857.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 377.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.26e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.557807595395788735533749920912, −8.780855562956937417448733857940, −7.56736704596782613166475585575, −6.80622178673015292518999943172, −5.96436667969269227134938034229, −5.11869965497779920503891244566, −4.64629378547434903352906280493, −2.71570203186089850101471631962, −2.20651834931504747098513911918, −0.69044925793705892987760497981,
0.69044925793705892987760497981, 2.20651834931504747098513911918, 2.71570203186089850101471631962, 4.64629378547434903352906280493, 5.11869965497779920503891244566, 5.96436667969269227134938034229, 6.80622178673015292518999943172, 7.56736704596782613166475585575, 8.780855562956937417448733857940, 9.557807595395788735533749920912