Properties

Label 2-1176-1.1-c3-0-10
Degree $2$
Conductor $1176$
Sign $1$
Analytic cond. $69.3862$
Root an. cond. $8.32984$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 4.11·5-s + 9·9-s + 17.9·11-s + 23.4·13-s + 12.3·15-s + 76.2·17-s + 35.5·19-s − 40.7·23-s − 108.·25-s − 27·27-s − 178.·29-s + 31.6·31-s − 53.8·33-s − 54.8·37-s − 70.2·39-s − 190.·41-s − 131.·43-s − 37.0·45-s + 199.·47-s − 228.·51-s + 321.·53-s − 73.8·55-s − 106.·57-s + 163.·59-s + 265.·61-s − 96.4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.368·5-s + 0.333·9-s + 0.491·11-s + 0.499·13-s + 0.212·15-s + 1.08·17-s + 0.429·19-s − 0.369·23-s − 0.864·25-s − 0.192·27-s − 1.14·29-s + 0.183·31-s − 0.283·33-s − 0.243·37-s − 0.288·39-s − 0.725·41-s − 0.468·43-s − 0.122·45-s + 0.619·47-s − 0.627·51-s + 0.834·53-s − 0.181·55-s − 0.248·57-s + 0.360·59-s + 0.556·61-s − 0.184·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1176 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1176\)    =    \(2^{3} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(69.3862\)
Root analytic conductor: \(8.32984\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1176} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1176,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.539567851\)
\(L(\frac12)\) \(\approx\) \(1.539567851\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 \)
good5 \( 1 + 4.11T + 125T^{2} \)
11 \( 1 - 17.9T + 1.33e3T^{2} \)
13 \( 1 - 23.4T + 2.19e3T^{2} \)
17 \( 1 - 76.2T + 4.91e3T^{2} \)
19 \( 1 - 35.5T + 6.85e3T^{2} \)
23 \( 1 + 40.7T + 1.21e4T^{2} \)
29 \( 1 + 178.T + 2.43e4T^{2} \)
31 \( 1 - 31.6T + 2.97e4T^{2} \)
37 \( 1 + 54.8T + 5.06e4T^{2} \)
41 \( 1 + 190.T + 6.89e4T^{2} \)
43 \( 1 + 131.T + 7.95e4T^{2} \)
47 \( 1 - 199.T + 1.03e5T^{2} \)
53 \( 1 - 321.T + 1.48e5T^{2} \)
59 \( 1 - 163.T + 2.05e5T^{2} \)
61 \( 1 - 265.T + 2.26e5T^{2} \)
67 \( 1 - 278.T + 3.00e5T^{2} \)
71 \( 1 + 10.5T + 3.57e5T^{2} \)
73 \( 1 - 584.T + 3.89e5T^{2} \)
79 \( 1 + 183.T + 4.93e5T^{2} \)
83 \( 1 + 175.T + 5.71e5T^{2} \)
89 \( 1 - 47.1T + 7.04e5T^{2} \)
97 \( 1 + 556.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.543600641907311040783618624470, −8.517390678985110198636010741871, −7.69544794713603259787804284300, −6.92263118801407254667097115432, −5.93193658694550236658827524522, −5.29298008941376845191641812522, −4.08632158761759094452867784328, −3.39846815736164214529371856514, −1.82290130031543820500956281915, −0.67330610387098018844290457915, 0.67330610387098018844290457915, 1.82290130031543820500956281915, 3.39846815736164214529371856514, 4.08632158761759094452867784328, 5.29298008941376845191641812522, 5.93193658694550236658827524522, 6.92263118801407254667097115432, 7.69544794713603259787804284300, 8.517390678985110198636010741871, 9.543600641907311040783618624470

Graph of the $Z$-function along the critical line