Properties

Label 2-1170-5.4-c1-0-24
Degree $2$
Conductor $1170$
Sign $i$
Analytic cond. $9.34249$
Root an. cond. $3.05654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s − 2.23i·5-s + 3.23i·7-s i·8-s + 2.23·10-s − 4.47·11-s i·13-s − 3.23·14-s + 16-s − 7.23i·17-s + 2.76·19-s + 2.23i·20-s − 4.47i·22-s + 2.76i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s − 0.999i·5-s + 1.22i·7-s − 0.353i·8-s + 0.707·10-s − 1.34·11-s − 0.277i·13-s − 0.864·14-s + 0.250·16-s − 1.75i·17-s + 0.634·19-s + 0.499i·20-s − 0.953i·22-s + 0.576i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1170\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $i$
Analytic conductor: \(9.34249\)
Root analytic conductor: \(3.05654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1170} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1170,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6234787472\)
\(L(\frac12)\) \(\approx\) \(0.6234787472\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 + 2.23iT \)
13 \( 1 + iT \)
good7 \( 1 - 3.23iT - 7T^{2} \)
11 \( 1 + 4.47T + 11T^{2} \)
17 \( 1 + 7.23iT - 17T^{2} \)
19 \( 1 - 2.76T + 19T^{2} \)
23 \( 1 - 2.76iT - 23T^{2} \)
29 \( 1 + 3.70T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 10.9iT - 37T^{2} \)
41 \( 1 + 3.52T + 41T^{2} \)
43 \( 1 - 2.47iT - 43T^{2} \)
47 \( 1 + 12.9iT - 47T^{2} \)
53 \( 1 + 0.472iT - 53T^{2} \)
59 \( 1 + 8.47T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 - 2.47T + 71T^{2} \)
73 \( 1 + 13.2iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 + 4.94iT - 83T^{2} \)
89 \( 1 - 0.472T + 89T^{2} \)
97 \( 1 + 3.70iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.174601610690181129854815098713, −8.933924204698048386180301046018, −7.77634618559012901780365375497, −7.40085379561879823170767833345, −5.90130607404530129969061503469, −5.29936802720990945089762401949, −4.89888016355259695651438855418, −3.35219085642063347919301023193, −2.14464046230874063237771012138, −0.26201167215684390288338673534, 1.57933089937505286183862185698, 2.84194299343676217612214822296, 3.67555559451482835302121707747, 4.56119144426292483518143247032, 5.76403880007138455769491397093, 6.72184024052943561211342506970, 7.66098698629732074408746764982, 8.175923495633132699666901056009, 9.491071738116274701060013647397, 10.33175685116791975373319095871

Graph of the $Z$-function along the critical line