Properties

Label 2-1170-5.4-c1-0-18
Degree $2$
Conductor $1170$
Sign $i$
Analytic cond. $9.34249$
Root an. cond. $3.05654$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 2.23i·5-s + 1.23i·7-s + i·8-s − 2.23·10-s + 4.47·11-s + i·13-s + 1.23·14-s + 16-s + 2.76i·17-s + 7.23·19-s + 2.23i·20-s − 4.47i·22-s − 7.23i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 0.999i·5-s + 0.467i·7-s + 0.353i·8-s − 0.707·10-s + 1.34·11-s + 0.277i·13-s + 0.330·14-s + 0.250·16-s + 0.670i·17-s + 1.66·19-s + 0.499i·20-s − 0.953i·22-s − 1.50i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1170\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $i$
Analytic conductor: \(9.34249\)
Root analytic conductor: \(3.05654\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1170} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1170,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.684130079\)
\(L(\frac12)\) \(\approx\) \(1.684130079\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 + 2.23iT \)
13 \( 1 - iT \)
good7 \( 1 - 1.23iT - 7T^{2} \)
11 \( 1 - 4.47T + 11T^{2} \)
17 \( 1 - 2.76iT - 17T^{2} \)
19 \( 1 - 7.23T + 19T^{2} \)
23 \( 1 + 7.23iT - 23T^{2} \)
29 \( 1 - 9.70T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 6.94iT - 37T^{2} \)
41 \( 1 + 12.4T + 41T^{2} \)
43 \( 1 - 6.47iT - 43T^{2} \)
47 \( 1 + 4.94iT - 47T^{2} \)
53 \( 1 + 8.47iT - 53T^{2} \)
59 \( 1 - 0.472T + 59T^{2} \)
61 \( 1 - 6.94T + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 + 6.47T + 71T^{2} \)
73 \( 1 - 8.76iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 + 12.9iT - 83T^{2} \)
89 \( 1 + 8.47T + 89T^{2} \)
97 \( 1 + 9.70iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.607176728095004502378426959737, −8.693766088040737767552215606949, −8.469340749329121909548821295009, −7.07809524306551318955255060465, −6.07108019802061408245793658620, −5.10950365093518285800547889106, −4.29769733559596739031261590123, −3.36298921153972273060258796808, −1.96755688986959286829733024527, −0.915287690756451568720356901436, 1.24262176852662423923256635109, 3.08162627197731702120737937252, 3.77371278341399922541081479755, 4.98890474165195066997866544501, 5.92384333087476199343330538974, 6.91033823705214349534164527448, 7.21075631069730629420682867936, 8.160509047031454372191717713951, 9.262239438727417866731836792088, 9.827376562594895857013424358790

Graph of the $Z$-function along the critical line