L(s) = 1 | + (−0.517 − 1.93i)2-s + (−1.73 + 0.999i)4-s + (1.93 − 1.93i)5-s + (−0.5 − 0.133i)7-s + (−4.73 − 2.73i)10-s + (−4.05 + 1.08i)11-s + (3.59 + 0.232i)13-s + 1.03i·14-s + (−1.99 + 3.46i)16-s + (3.34 + 5.79i)17-s + (1.63 − 6.09i)19-s + (−1.41 + 5.27i)20-s + (4.19 + 7.26i)22-s + (1.22 − 2.12i)23-s − 2.46i·25-s + (−1.41 − 7.07i)26-s + ⋯ |
L(s) = 1 | + (−0.366 − 1.36i)2-s + (−0.866 + 0.499i)4-s + (0.863 − 0.863i)5-s + (−0.188 − 0.0506i)7-s + (−1.49 − 0.863i)10-s + (−1.22 + 0.327i)11-s + (0.997 + 0.0643i)13-s + 0.276i·14-s + (−0.499 + 0.866i)16-s + (0.811 + 1.40i)17-s + (0.374 − 1.39i)19-s + (−0.316 + 1.18i)20-s + (0.894 + 1.54i)22-s + (0.255 − 0.442i)23-s − 0.492i·25-s + (−0.277 − 1.38i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 + 0.793i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.415767 - 0.842663i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.415767 - 0.842663i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-3.59 - 0.232i)T \) |
good | 2 | \( 1 + (0.517 + 1.93i)T + (-1.73 + i)T^{2} \) |
| 5 | \( 1 + (-1.93 + 1.93i)T - 5iT^{2} \) |
| 7 | \( 1 + (0.5 + 0.133i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (4.05 - 1.08i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-3.34 - 5.79i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.63 + 6.09i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.22 + 2.12i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.22 - 0.707i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.63 - 4.63i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.830 - 3.09i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-0.378 - 1.41i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (6.69 - 3.86i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.31 - 2.31i)T + 47iT^{2} \) |
| 53 | \( 1 - 5.93iT - 53T^{2} \) |
| 59 | \( 1 + (0.0507 - 0.189i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (6.59 + 11.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.59 - 2.03i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (15.1 + 4.05i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-2.90 + 2.90i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.19T + 79T^{2} \) |
| 83 | \( 1 + (-5.27 + 5.27i)T - 83iT^{2} \) |
| 89 | \( 1 + (4.38 - 1.17i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (1.30 - 4.86i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.05425720487770923074810810988, −12.19185510385262916666200644502, −10.87337663195813735640050006781, −10.18111899116183032634693294121, −9.203391651495216453712060120488, −8.257226002161242438294590477859, −6.26495207537446421593941058629, −4.83591734425286094627685709194, −3.03532220408995346974800512811, −1.42332209345856480948375067618,
2.93243566888240504604187183158, 5.44543275254098123184577273261, 6.11435758023908675058791089821, 7.31754825431984126542739787284, 8.220526401950965889927726982274, 9.572589239706844068433331381714, 10.42723949047675937770578827198, 11.77024661832632330343526543458, 13.46744745710886438746686165618, 14.00790407366033647534538584358