L(s) = 1 | + 1.65i·2-s + 1.26·4-s − 2.99i·5-s + 9.10·7-s + 8.70i·8-s + 4.94·10-s + 0.315i·11-s + 3.60·13-s + 15.0i·14-s − 9.31·16-s + 16.4i·17-s − 23.4·19-s − 3.79i·20-s − 0.520·22-s − 13.6i·23-s + ⋯ |
L(s) = 1 | + 0.826i·2-s + 0.317·4-s − 0.598i·5-s + 1.30·7-s + 1.08i·8-s + 0.494·10-s + 0.0286i·11-s + 0.277·13-s + 1.07i·14-s − 0.582·16-s + 0.968i·17-s − 1.23·19-s − 0.189i·20-s − 0.0236·22-s − 0.591i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.51228 + 0.782818i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51228 + 0.782818i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 - 3.60T \) |
good | 2 | \( 1 - 1.65iT - 4T^{2} \) |
| 5 | \( 1 + 2.99iT - 25T^{2} \) |
| 7 | \( 1 - 9.10T + 49T^{2} \) |
| 11 | \( 1 - 0.315iT - 121T^{2} \) |
| 17 | \( 1 - 16.4iT - 289T^{2} \) |
| 19 | \( 1 + 23.4T + 361T^{2} \) |
| 23 | \( 1 + 13.6iT - 529T^{2} \) |
| 29 | \( 1 + 42.6iT - 841T^{2} \) |
| 31 | \( 1 + 4.47T + 961T^{2} \) |
| 37 | \( 1 + 23.2T + 1.36e3T^{2} \) |
| 41 | \( 1 + 24.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 57.0T + 1.84e3T^{2} \) |
| 47 | \( 1 + 44.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 61.8iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 90.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 89.6T + 3.72e3T^{2} \) |
| 67 | \( 1 - 98.0T + 4.48e3T^{2} \) |
| 71 | \( 1 - 77.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 140.T + 5.32e3T^{2} \) |
| 79 | \( 1 - 71.5T + 6.24e3T^{2} \) |
| 83 | \( 1 - 109. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 119. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 39.1T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.65592244977391340068967209040, −12.40062830294307073713864230053, −11.36312490891644650776311689660, −10.46806047538254212377112950140, −8.546426037653768069753511482434, −8.206119374759121010580624815967, −6.79498509918546222205583538686, −5.58940017713557377948592290467, −4.42886907609107245471618039841, −1.92622490768769510406182049736,
1.68324677615564069577048129029, 3.16642489158974538752024676309, 4.80294673842849022207922425114, 6.53596274300372422343518707257, 7.62817362922471084095810662915, 8.998272427369001772839623651203, 10.45346677892456457631871690375, 11.04990259556906846479882186340, 11.81511382919292982311510514362, 12.92285516112084383400204232541