L(s) = 1 | + (−4.67 − 4.67i)2-s + 27.7i·4-s + (−13.1 − 13.1i)5-s + (−30.2 + 30.2i)7-s + (55.1 − 55.1i)8-s + 122. i·10-s + (−58.8 + 58.8i)11-s + (120. − 118. i)13-s + 282.·14-s − 71.7·16-s + 257. i·17-s + (336. + 336. i)19-s + (365. − 365. i)20-s + 550.·22-s − 486. i·23-s + ⋯ |
L(s) = 1 | + (−1.16 − 1.16i)2-s + 1.73i·4-s + (−0.525 − 0.525i)5-s + (−0.616 + 0.616i)7-s + (0.862 − 0.862i)8-s + 1.22i·10-s + (−0.485 + 0.485i)11-s + (0.713 − 0.700i)13-s + 1.44·14-s − 0.280·16-s + 0.891i·17-s + (0.931 + 0.931i)19-s + (0.913 − 0.913i)20-s + 1.13·22-s − 0.919i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.463 + 0.886i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.463 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.579703 - 0.351037i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.579703 - 0.351037i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-120. + 118. i)T \) |
good | 2 | \( 1 + (4.67 + 4.67i)T + 16iT^{2} \) |
| 5 | \( 1 + (13.1 + 13.1i)T + 625iT^{2} \) |
| 7 | \( 1 + (30.2 - 30.2i)T - 2.40e3iT^{2} \) |
| 11 | \( 1 + (58.8 - 58.8i)T - 1.46e4iT^{2} \) |
| 17 | \( 1 - 257. iT - 8.35e4T^{2} \) |
| 19 | \( 1 + (-336. - 336. i)T + 1.30e5iT^{2} \) |
| 23 | \( 1 + 486. iT - 2.79e5T^{2} \) |
| 29 | \( 1 - 771.T + 7.07e5T^{2} \) |
| 31 | \( 1 + (1.30e3 + 1.30e3i)T + 9.23e5iT^{2} \) |
| 37 | \( 1 + (-1.05e3 + 1.05e3i)T - 1.87e6iT^{2} \) |
| 41 | \( 1 + (-1.12e3 - 1.12e3i)T + 2.82e6iT^{2} \) |
| 43 | \( 1 - 1.93e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + (-65.7 + 65.7i)T - 4.87e6iT^{2} \) |
| 53 | \( 1 - 5.04e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + (-206. + 206. i)T - 1.21e7iT^{2} \) |
| 61 | \( 1 - 6.99e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (939. + 939. i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 + (-3.04e3 - 3.04e3i)T + 2.54e7iT^{2} \) |
| 73 | \( 1 + (840. - 840. i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 - 4.04e3T + 3.89e7T^{2} \) |
| 83 | \( 1 + (2.06e3 + 2.06e3i)T + 4.74e7iT^{2} \) |
| 89 | \( 1 + (6.03e3 - 6.03e3i)T - 6.27e7iT^{2} \) |
| 97 | \( 1 + (-5.57e3 - 5.57e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.53449321430725594116040441379, −11.48336382699568594418643173896, −10.42633647300190843544129501570, −9.589847287898001844860813216929, −8.498988484327483505824179778447, −7.80892939805131685040570731229, −5.84535187302915501060309906919, −3.86884906667257488315938462120, −2.47986450412030259638970478020, −0.78726964986329520113861952905,
0.70744340366295474961971927299, 3.41399154116419173133312467458, 5.45559042114160917909822527866, 6.92849611549900048800763536669, 7.27827807914165490498875466978, 8.630091635664709055293353494718, 9.535476291007177419463456162066, 10.62401337253011817607749811088, 11.59318925264846001675450754963, 13.37758448928896960896145643389