L(s) = 1 | + (−2.89 + 2.89i)2-s − 0.794i·4-s + (−18.6 + 18.6i)5-s + (−15.2 − 15.2i)7-s + (−44.0 − 44.0i)8-s − 108. i·10-s + (59.2 + 59.2i)11-s + (−157. + 62.1i)13-s + 88.4·14-s + 268.·16-s − 272. i·17-s + (−54.5 + 54.5i)19-s + (14.7 + 14.7i)20-s − 343.·22-s − 596. i·23-s + ⋯ |
L(s) = 1 | + (−0.724 + 0.724i)2-s − 0.0496i·4-s + (−0.745 + 0.745i)5-s + (−0.311 − 0.311i)7-s + (−0.688 − 0.688i)8-s − 1.08i·10-s + (0.489 + 0.489i)11-s + (−0.929 + 0.367i)13-s + 0.451·14-s + 1.04·16-s − 0.944i·17-s + (−0.151 + 0.151i)19-s + (0.0369 + 0.0369i)20-s − 0.709·22-s − 1.12i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.621 + 0.783i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.273837 - 0.132308i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.273837 - 0.132308i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (157. - 62.1i)T \) |
good | 2 | \( 1 + (2.89 - 2.89i)T - 16iT^{2} \) |
| 5 | \( 1 + (18.6 - 18.6i)T - 625iT^{2} \) |
| 7 | \( 1 + (15.2 + 15.2i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 + (-59.2 - 59.2i)T + 1.46e4iT^{2} \) |
| 17 | \( 1 + 272. iT - 8.35e4T^{2} \) |
| 19 | \( 1 + (54.5 - 54.5i)T - 1.30e5iT^{2} \) |
| 23 | \( 1 + 596. iT - 2.79e5T^{2} \) |
| 29 | \( 1 - 1.31e3T + 7.07e5T^{2} \) |
| 31 | \( 1 + (-874. + 874. i)T - 9.23e5iT^{2} \) |
| 37 | \( 1 + (403. + 403. i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 + (983. - 983. i)T - 2.82e6iT^{2} \) |
| 43 | \( 1 + 2.23e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + (-369. - 369. i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + 4.39e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + (976. + 976. i)T + 1.21e7iT^{2} \) |
| 61 | \( 1 + 6.16e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (1.70e3 - 1.70e3i)T - 2.01e7iT^{2} \) |
| 71 | \( 1 + (672. - 672. i)T - 2.54e7iT^{2} \) |
| 73 | \( 1 + (1.16e3 + 1.16e3i)T + 2.83e7iT^{2} \) |
| 79 | \( 1 - 8.34e3T + 3.89e7T^{2} \) |
| 83 | \( 1 + (6.51e3 - 6.51e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + (8.36e3 + 8.36e3i)T + 6.27e7iT^{2} \) |
| 97 | \( 1 + (-2.27e3 + 2.27e3i)T - 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.42874543869023398224102854683, −11.73279247397586424109152530156, −10.29594065338023389053078112020, −9.373173424475014187048822310643, −8.126936010947787542754820798201, −7.13873604112219604032810034547, −6.56626704810458446913640860368, −4.41761641986629402111492464332, −2.95149523723459462041548071638, −0.18599498228617313607110483223,
1.24338494762895988061052666745, 3.05972325402831586382193188075, 4.78543016240351124701585684555, 6.21705818836592392628344529609, 7.999302132826739259419196081051, 8.799499670783226980878832100955, 9.796923032212019006198409841490, 10.81860724230724128350732723239, 11.99574603236569803394132812963, 12.40492568065488529007770781916