L(s) = 1 | − 4.54i·2-s − 12.6·4-s − 12.9i·5-s − 16.7i·7-s + 21.2i·8-s − 58.7·10-s + 24.9i·11-s + (33.7 + 32.5i)13-s − 76.0·14-s − 4.67·16-s − 134.·17-s − 14.9i·19-s + 163. i·20-s + 113.·22-s + 72·23-s + ⋯ |
L(s) = 1 | − 1.60i·2-s − 1.58·4-s − 1.15i·5-s − 0.903i·7-s + 0.940i·8-s − 1.85·10-s + 0.683i·11-s + (0.719 + 0.694i)13-s − 1.45·14-s − 0.0731·16-s − 1.91·17-s − 0.180i·19-s + 1.83i·20-s + 1.09·22-s + 0.652·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.444339 + 1.09968i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.444339 + 1.09968i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-33.7 - 32.5i)T \) |
good | 2 | \( 1 + 4.54iT - 8T^{2} \) |
| 5 | \( 1 + 12.9iT - 125T^{2} \) |
| 7 | \( 1 + 16.7iT - 343T^{2} \) |
| 11 | \( 1 - 24.9iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 134.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 14.9iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 72T + 1.21e4T^{2} \) |
| 29 | \( 1 - 206.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 249. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 293. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 250. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 432.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 159. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 194.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 232. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 185.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 39.4iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 920. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 549. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 933.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.09e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 532. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 362. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.34722720571570713282008315208, −11.34895504646181763608019454364, −10.53212125852560436262777164633, −9.343723002851688323840401593847, −8.650307644997908360771824447395, −6.85628832495656741693293592618, −4.70176294154618383515049409176, −4.02443129768475471476256241117, −2.03677738579629372244051288228, −0.64492288484619623777322623743,
2.96765224285900746052429781655, 4.95661802914526892062521586123, 6.28686298370188915442704540550, 6.74361625982959498936518871315, 8.256627592157154795934583097301, 8.876749095230373174791808701947, 10.52348459487323165198100093751, 11.51432987397632014511280927319, 13.17096814115004453528770512376, 13.97865230901240122326860865825