L(s) = 1 | + (3.46 + 2i)4-s + (1.42 + 5.33i)7-s + (12.9 − 0.5i)13-s + (7.99 + 13.8i)16-s + (−1.16 + 0.313i)19-s − 25i·25-s + (−5.71 + 21.3i)28-s + (−36.8 − 36.8i)31-s + (−65.0 − 17.4i)37-s + (−19.5 − 11.2i)43-s + (16.0 − 9.27i)49-s + (46 + 24.2i)52-s + (56.2 − 97.5i)61-s + 63.9i·64-s + (−22.0 + 82.2i)67-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)4-s + (0.204 + 0.761i)7-s + (0.999 − 0.0384i)13-s + (0.499 + 0.866i)16-s + (−0.0615 + 0.0164i)19-s − i·25-s + (−0.204 + 0.761i)28-s + (−1.18 − 1.18i)31-s + (−1.75 − 0.471i)37-s + (−0.453 − 0.261i)43-s + (0.327 − 0.189i)49-s + (0.884 + 0.466i)52-s + (0.922 − 1.59i)61-s + 0.999i·64-s + (−0.328 + 1.22i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.824 - 0.565i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.824 - 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.59097 + 0.492740i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.59097 + 0.492740i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-12.9 + 0.5i)T \) |
good | 2 | \( 1 + (-3.46 - 2i)T^{2} \) |
| 5 | \( 1 + 25iT^{2} \) |
| 7 | \( 1 + (-1.42 - 5.33i)T + (-42.4 + 24.5i)T^{2} \) |
| 11 | \( 1 + (104. + 60.5i)T^{2} \) |
| 17 | \( 1 + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (1.16 - 0.313i)T + (312. - 180.5i)T^{2} \) |
| 23 | \( 1 + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (36.8 + 36.8i)T + 961iT^{2} \) |
| 37 | \( 1 + (65.0 + 17.4i)T + (1.18e3 + 684.5i)T^{2} \) |
| 41 | \( 1 + (-1.45e3 - 840.5i)T^{2} \) |
| 43 | \( 1 + (19.5 + 11.2i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 - 2.20e3iT^{2} \) |
| 53 | \( 1 + 2.80e3T^{2} \) |
| 59 | \( 1 + (-3.01e3 + 1.74e3i)T^{2} \) |
| 61 | \( 1 + (-56.2 + 97.5i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (22.0 - 82.2i)T + (-3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + (4.36e3 - 2.52e3i)T^{2} \) |
| 73 | \( 1 + (56.7 - 56.7i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 157.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 6.88e3iT^{2} \) |
| 89 | \( 1 + (6.85e3 + 3.96e3i)T^{2} \) |
| 97 | \( 1 + (-180. + 48.3i)T + (8.14e3 - 4.70e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.21783517286361333086402475544, −12.23703553393297187050193477804, −11.42282693779055579695653645625, −10.47114227840686612229981585327, −8.924161589659249322478223566610, −8.006089256533648792999086117659, −6.71220808728986516728608506087, −5.60427385338968343450665617269, −3.69103721176302777319168334967, −2.12990784565480443851830159081,
1.49233516272456680939190834537, 3.49689878434552070953111816313, 5.27431052887705394430799525353, 6.57800982786059469241387327744, 7.51616240557551373361615703374, 8.938081568196808006647498396745, 10.37128567949318572105452408702, 10.95152722435445926746450315856, 11.99196413926986638677819399841, 13.30766850756355281974724728063