Properties

Label 2-117-13.10-c7-0-17
Degree $2$
Conductor $117$
Sign $-0.772 - 0.635i$
Analytic cond. $36.5490$
Root an. cond. $6.04558$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (5.49 − 3.17i)2-s + (−43.8 + 75.9i)4-s + 425. i·5-s + (1.51e3 + 874. i)7-s + 1.36e3i·8-s + (1.35e3 + 2.34e3i)10-s + (−2.67e3 + 1.54e3i)11-s + (−4.95e3 + 6.17e3i)13-s + 1.11e4·14-s + (−1.27e3 − 2.20e3i)16-s + (1.36e4 − 2.36e4i)17-s + (3.68e4 + 2.12e4i)19-s + (−3.23e4 − 1.86e4i)20-s + (−9.79e3 + 1.69e4i)22-s + (−3.01e4 − 5.22e4i)23-s + ⋯
L(s)  = 1  + (0.485 − 0.280i)2-s + (−0.342 + 0.593i)4-s + 1.52i·5-s + (1.66 + 0.963i)7-s + 0.945i·8-s + (0.427 + 0.740i)10-s + (−0.605 + 0.349i)11-s + (−0.625 + 0.780i)13-s + 1.08·14-s + (−0.0775 − 0.134i)16-s + (0.673 − 1.16i)17-s + (1.23 + 0.711i)19-s + (−0.904 − 0.522i)20-s + (−0.196 + 0.339i)22-s + (−0.516 − 0.894i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.772 - 0.635i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.772 - 0.635i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117\)    =    \(3^{2} \cdot 13\)
Sign: $-0.772 - 0.635i$
Analytic conductor: \(36.5490\)
Root analytic conductor: \(6.04558\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{117} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 117,\ (\ :7/2),\ -0.772 - 0.635i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.531728073\)
\(L(\frac12)\) \(\approx\) \(2.531728073\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 + (4.95e3 - 6.17e3i)T \)
good2 \( 1 + (-5.49 + 3.17i)T + (64 - 110. i)T^{2} \)
5 \( 1 - 425. iT - 7.81e4T^{2} \)
7 \( 1 + (-1.51e3 - 874. i)T + (4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (2.67e3 - 1.54e3i)T + (9.74e6 - 1.68e7i)T^{2} \)
17 \( 1 + (-1.36e4 + 2.36e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (-3.68e4 - 2.12e4i)T + (4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (3.01e4 + 5.22e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (1.01e4 + 1.76e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 - 4.04e4iT - 2.75e10T^{2} \)
37 \( 1 + (-2.31e5 + 1.33e5i)T + (4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + (-860. + 496. i)T + (9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (-7.72e4 + 1.33e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 - 6.67e5iT - 5.06e11T^{2} \)
53 \( 1 - 9.55e5T + 1.17e12T^{2} \)
59 \( 1 + (9.07e5 + 5.23e5i)T + (1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (5.75e5 - 9.96e5i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-7.85e5 + 4.53e5i)T + (3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (1.04e6 + 6.06e5i)T + (4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + 3.26e6iT - 1.10e13T^{2} \)
79 \( 1 - 5.00e6T + 1.92e13T^{2} \)
83 \( 1 + 4.63e5iT - 2.71e13T^{2} \)
89 \( 1 + (-1.30e6 + 7.55e5i)T + (2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (1.12e7 + 6.48e6i)T + (4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17473186524756996683166132415, −11.74874658447392396148525523766, −10.81534303069315239338811431618, −9.442171555340419046836999929689, −7.990608839937043808007850534195, −7.36136699563302719241236491692, −5.54983268564382250141311555058, −4.53906027099248701800418757438, −2.93214753967601360781828674052, −2.14575636596747222988460864181, 0.68297220932946240349658682969, 1.40658228206739536157852596719, 4.02184575711931850165168842045, 5.07064019348607973917053115396, 5.47902594753085991729582570052, 7.59289040955863821266521491274, 8.309045996946402113845226732354, 9.659100488460789299362081663578, 10.66714104600671334033071408728, 11.91421341874861400923423762207

Graph of the $Z$-function along the critical line