Properties

Label 2-117-13.10-c7-0-16
Degree $2$
Conductor $117$
Sign $0.996 + 0.0834i$
Analytic cond. $36.5490$
Root an. cond. $6.04558$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−15.6 + 9.01i)2-s + (98.3 − 170. i)4-s − 339. i·5-s + (−437. − 252. i)7-s + 1.23e3i·8-s + (3.06e3 + 5.30e3i)10-s + (−3.64e3 + 2.10e3i)11-s + (−560. + 7.90e3i)13-s + 9.09e3·14-s + (1.42e3 + 2.47e3i)16-s + (−1.37e4 + 2.37e4i)17-s + (4.16e4 + 2.40e4i)19-s + (−5.78e4 − 3.34e4i)20-s + (3.79e4 − 6.56e4i)22-s + (−4.07e4 − 7.05e4i)23-s + ⋯
L(s)  = 1  + (−1.37 + 0.796i)2-s + (0.768 − 1.33i)4-s − 1.21i·5-s + (−0.481 − 0.278i)7-s + 0.855i·8-s + (0.967 + 1.67i)10-s + (−0.825 + 0.476i)11-s + (−0.0707 + 0.997i)13-s + 0.886·14-s + (0.0871 + 0.150i)16-s + (−0.678 + 1.17i)17-s + (1.39 + 0.804i)19-s + (−1.61 − 0.933i)20-s + (0.759 − 1.31i)22-s + (−0.697 − 1.20i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0834i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0834i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(117\)    =    \(3^{2} \cdot 13\)
Sign: $0.996 + 0.0834i$
Analytic conductor: \(36.5490\)
Root analytic conductor: \(6.04558\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{117} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 117,\ (\ :7/2),\ 0.996 + 0.0834i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.6316606308\)
\(L(\frac12)\) \(\approx\) \(0.6316606308\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 + (560. - 7.90e3i)T \)
good2 \( 1 + (15.6 - 9.01i)T + (64 - 110. i)T^{2} \)
5 \( 1 + 339. iT - 7.81e4T^{2} \)
7 \( 1 + (437. + 252. i)T + (4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (3.64e3 - 2.10e3i)T + (9.74e6 - 1.68e7i)T^{2} \)
17 \( 1 + (1.37e4 - 2.37e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (-4.16e4 - 2.40e4i)T + (4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (4.07e4 + 7.05e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (1.72e4 + 2.98e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 - 1.20e5iT - 2.75e10T^{2} \)
37 \( 1 + (-6.06e4 + 3.50e4i)T + (4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + (-5.35e5 + 3.09e5i)T + (9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (-1.67e5 + 2.89e5i)T + (-1.35e11 - 2.35e11i)T^{2} \)
47 \( 1 - 1.58e5iT - 5.06e11T^{2} \)
53 \( 1 - 5.71e5T + 1.17e12T^{2} \)
59 \( 1 + (-5.55e5 - 3.20e5i)T + (1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (-5.20e4 + 9.02e4i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-3.90e5 + 2.25e5i)T + (3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (-2.65e6 - 1.53e6i)T + (4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + 4.62e6iT - 1.10e13T^{2} \)
79 \( 1 + 7.21e6T + 1.92e13T^{2} \)
83 \( 1 + 5.74e6iT - 2.71e13T^{2} \)
89 \( 1 + (8.66e6 - 5.00e6i)T + (2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 + (-6.35e6 - 3.67e6i)T + (4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.21708074784649634042343113374, −10.58853023437957467481926854433, −9.722894483767350271740329045606, −8.836153051389354049840006955327, −8.017930573620459413064765037365, −6.92659767877588279848864909969, −5.71294867687482550334650801456, −4.22711151791320840192662622461, −1.78061793043090803957188649033, −0.49497515173724444002169839427, 0.67631216745971236512412120469, 2.60887168505860000178164398746, 3.07667271794469609931565041971, 5.56738322530418561578391259914, 7.16400509239311249511519174061, 7.922700432310474985361502295615, 9.356570005444650309476529693378, 9.990087320545196624117998000900, 11.08034452030822807414417420853, 11.52587193100654817171237164150

Graph of the $Z$-function along the critical line