L(s) = 1 | − 1.73i·2-s + 1.73i·3-s − 0.999·4-s + (1.5 + 0.866i)5-s + 2.99·6-s + (1.5 + 0.866i)7-s − 1.73i·8-s − 2.99·9-s + (1.49 − 2.59i)10-s − 3.46i·11-s − 1.73i·12-s + (−1 + 3.46i)13-s + (1.49 − 2.59i)14-s + (−1.49 + 2.59i)15-s − 5·16-s + (−1.5 − 2.59i)17-s + ⋯ |
L(s) = 1 | − 1.22i·2-s + 0.999i·3-s − 0.499·4-s + (0.670 + 0.387i)5-s + 1.22·6-s + (0.566 + 0.327i)7-s − 0.612i·8-s − 0.999·9-s + (0.474 − 0.821i)10-s − 1.04i·11-s − 0.499i·12-s + (−0.277 + 0.960i)13-s + (0.400 − 0.694i)14-s + (−0.387 + 0.670i)15-s − 1.25·16-s + (−0.363 − 0.630i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12652 - 0.359167i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12652 - 0.359167i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 1.73iT \) |
| 13 | \( 1 + (1 - 3.46i)T \) |
good | 2 | \( 1 + 1.73iT - 2T^{2} \) |
| 5 | \( 1 + (-1.5 - 0.866i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.5 - 0.866i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 3.46iT - 11T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 - 0.866i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 + (-7.5 - 4.33i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.5 + 2.59i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (10.5 - 6.06i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.5 + 2.59i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 3.46iT - 59T^{2} \) |
| 61 | \( 1 + (-2.5 + 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.5 + 6.06i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.5 - 4.33i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 6.92iT - 73T^{2} \) |
| 79 | \( 1 + (-5.5 - 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 + 2.59i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-13.5 - 7.79i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.5 - 7.79i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.51607083454318894937519297152, −11.87309586014801198716934559275, −11.32979864950134251443571025590, −10.42249421526834460621705263113, −9.555554372129609893289075813831, −8.608430982151890089595969902945, −6.54227041416560991394916286023, −5.07752838344390214932622301790, −3.61107539215575108044696718396, −2.27075375258071963491569305690,
2.05794273235526551664889387787, 4.93825816823722969879644120524, 5.97787034747356742681129252949, 7.07519335918192037213891224748, 7.902841901973221556917586273794, 8.880287183576737153781596149957, 10.45909693767849444608675620981, 11.80430470715270512324443966518, 12.96275518142648054401127533643, 13.66759014459622925712490442218