L(s) = 1 | + (0.929 + 0.536i)2-s + (−0.744 − 1.56i)3-s + (−0.423 − 0.733i)4-s + (1.10 − 0.638i)5-s + (0.147 − 1.85i)6-s + (0.890 + 0.514i)7-s − 3.05i·8-s + (−1.89 + 2.32i)9-s + 1.37·10-s + (4.03 + 2.33i)11-s + (−0.831 + 1.20i)12-s + (−3.55 + 0.600i)13-s + (0.552 + 0.956i)14-s + (−1.82 − 1.25i)15-s + (0.794 − 1.37i)16-s − 0.476·17-s + ⋯ |
L(s) = 1 | + (0.657 + 0.379i)2-s + (−0.429 − 0.902i)3-s + (−0.211 − 0.366i)4-s + (0.494 − 0.285i)5-s + (0.0602 − 0.756i)6-s + (0.336 + 0.194i)7-s − 1.08i·8-s + (−0.630 + 0.776i)9-s + 0.433·10-s + (1.21 + 0.702i)11-s + (−0.240 + 0.348i)12-s + (−0.986 + 0.166i)13-s + (0.147 + 0.255i)14-s + (−0.470 − 0.323i)15-s + (0.198 − 0.344i)16-s − 0.115·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.771 + 0.636i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.771 + 0.636i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20633 - 0.433375i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20633 - 0.433375i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.744 + 1.56i)T \) |
| 13 | \( 1 + (3.55 - 0.600i)T \) |
good | 2 | \( 1 + (-0.929 - 0.536i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.10 + 0.638i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.890 - 0.514i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.03 - 2.33i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 0.476T + 17T^{2} \) |
| 19 | \( 1 - 6.69iT - 19T^{2} \) |
| 23 | \( 1 + (0.479 + 0.831i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.68 + 8.12i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.66 - 0.963i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4.94iT - 37T^{2} \) |
| 41 | \( 1 + (1.31 - 0.762i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.31 - 2.27i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.92 - 3.41i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 0.582T + 53T^{2} \) |
| 59 | \( 1 + (3.64 - 2.10i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.71 - 8.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.01 - 1.16i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.35iT - 71T^{2} \) |
| 73 | \( 1 + 12.8iT - 73T^{2} \) |
| 79 | \( 1 + (-6.45 + 11.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (8.86 + 5.11i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 6.85iT - 89T^{2} \) |
| 97 | \( 1 + (14.9 + 8.63i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.53432731588115383151646854452, −12.42885652986915380619328296384, −11.86859253760402338474614991622, −10.21970918686108931105269749810, −9.217557160196622336169573774533, −7.63310837270463780683210258947, −6.46818003751130467503950903675, −5.60449158364151222936447319884, −4.39817172058245211016563440569, −1.70541425282673793179447651860,
2.96992804933466798400569947755, 4.31051208960541779924119032497, 5.29894853071200398795154367104, 6.74006124402528312508201936744, 8.561749284210607073210306662823, 9.510670098825505933562172484210, 10.79636793626305435456800426971, 11.57762518378553343521179552483, 12.45884294970336621258688813151, 13.88444556008821174014320691223