L(s) = 1 | + (−0.929 − 0.536i)2-s + (−0.744 − 1.56i)3-s + (−0.423 − 0.733i)4-s + (−1.10 + 0.638i)5-s + (−0.147 + 1.85i)6-s + (−0.890 − 0.514i)7-s + 3.05i·8-s + (−1.89 + 2.32i)9-s + 1.37·10-s + (−4.03 − 2.33i)11-s + (−0.831 + 1.20i)12-s + (2.29 − 2.77i)13-s + (0.552 + 0.956i)14-s + (1.82 + 1.25i)15-s + (0.794 − 1.37i)16-s − 0.476·17-s + ⋯ |
L(s) = 1 | + (−0.657 − 0.379i)2-s + (−0.429 − 0.902i)3-s + (−0.211 − 0.366i)4-s + (−0.494 + 0.285i)5-s + (−0.0602 + 0.756i)6-s + (−0.336 − 0.194i)7-s + 1.08i·8-s + (−0.630 + 0.776i)9-s + 0.433·10-s + (−1.21 − 0.702i)11-s + (−0.240 + 0.348i)12-s + (0.637 − 0.770i)13-s + (0.147 + 0.255i)14-s + (0.470 + 0.323i)15-s + (0.198 − 0.344i)16-s − 0.115·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00406366 - 0.354491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00406366 - 0.354491i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.744 + 1.56i)T \) |
| 13 | \( 1 + (-2.29 + 2.77i)T \) |
good | 2 | \( 1 + (0.929 + 0.536i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.10 - 0.638i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.890 + 0.514i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.03 + 2.33i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 0.476T + 17T^{2} \) |
| 19 | \( 1 + 6.69iT - 19T^{2} \) |
| 23 | \( 1 + (0.479 + 0.831i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.68 + 8.12i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.66 + 0.963i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4.94iT - 37T^{2} \) |
| 41 | \( 1 + (-1.31 + 0.762i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.31 - 2.27i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.92 + 3.41i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 0.582T + 53T^{2} \) |
| 59 | \( 1 + (-3.64 + 2.10i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.71 - 8.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.01 + 1.16i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.35iT - 71T^{2} \) |
| 73 | \( 1 - 12.8iT - 73T^{2} \) |
| 79 | \( 1 + (-6.45 + 11.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.86 - 5.11i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.85iT - 89T^{2} \) |
| 97 | \( 1 + (-14.9 - 8.63i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.27146479839547112420057908282, −11.63677796525137708686243627845, −10.99281481827203080697054975390, −10.10244844319366097153866197163, −8.531935831581019726093918670248, −7.78628089420482503990761837681, −6.33266655504946320374128419827, −5.14359834264630205777446493130, −2.73535719804955112267915682791, −0.49801548062322619528807714181,
3.57573180191110194802208780593, 4.76373210523942172655253227736, 6.33966400025001686200110119595, 7.79696557528602302388448689288, 8.739595920772435876039900361536, 9.759210770572216062166277644827, 10.62960510651221389809108492552, 12.05952600772119765578667293123, 12.72469528412278761826623006668, 14.21147626893074935690491266604