L(s) = 1 | + (−1.41 − 0.818i)2-s + (0.471 + 1.66i)3-s + (0.338 + 0.587i)4-s + (−0.950 + 0.548i)5-s + (0.696 − 2.74i)6-s + (2.77 + 1.60i)7-s + 2.16i·8-s + (−2.55 + 1.57i)9-s + 1.79·10-s + (1.52 + 0.879i)11-s + (−0.818 + 0.841i)12-s + (1.37 + 3.33i)13-s + (−2.62 − 4.54i)14-s + (−1.36 − 1.32i)15-s + (2.44 − 4.24i)16-s + 1.47·17-s + ⋯ |
L(s) = 1 | + (−1.00 − 0.578i)2-s + (0.271 + 0.962i)3-s + (0.169 + 0.293i)4-s + (−0.425 + 0.245i)5-s + (0.284 − 1.12i)6-s + (1.05 + 0.606i)7-s + 0.764i·8-s + (−0.852 + 0.523i)9-s + 0.567·10-s + (0.459 + 0.265i)11-s + (−0.236 + 0.242i)12-s + (0.381 + 0.924i)13-s + (−0.701 − 1.21i)14-s + (−0.351 − 0.342i)15-s + (0.612 − 1.06i)16-s + 0.357·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.629047 + 0.254059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.629047 + 0.254059i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.471 - 1.66i)T \) |
| 13 | \( 1 + (-1.37 - 3.33i)T \) |
good | 2 | \( 1 + (1.41 + 0.818i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (0.950 - 0.548i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.77 - 1.60i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.52 - 0.879i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 1.47T + 17T^{2} \) |
| 19 | \( 1 + 3.61iT - 19T^{2} \) |
| 23 | \( 1 + (2.34 + 4.06i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.959 + 1.66i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.68 - 3.28i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 11.6iT - 37T^{2} \) |
| 41 | \( 1 + (-4.68 + 2.70i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.889 + 1.54i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-8.90 - 5.13i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 11.7T + 53T^{2} \) |
| 59 | \( 1 + (4.78 - 2.76i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.985 - 1.70i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.15 + 4.13i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.84iT - 71T^{2} \) |
| 73 | \( 1 + 1.24iT - 73T^{2} \) |
| 79 | \( 1 + (0.242 - 0.420i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (13.4 + 7.75i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 13.4iT - 89T^{2} \) |
| 97 | \( 1 + (-5.15 - 2.97i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.11063276800327037761190550670, −12.03031231926510483716664562902, −11.23124822460221938247287589281, −10.60694460491914925748930044265, −9.218655218820853101668960581449, −8.826598396079144775630526734011, −7.60526755620917488850758475538, −5.49011487752715715970471846182, −4.15499306812195095085210368885, −2.21594644855176431002979759337,
1.15285296245287200232375084859, 3.79438428999751086440427246550, 5.89965067946784761590211104136, 7.32036152691637360338681681131, 8.000890807189622613080287774538, 8.591946980607426298311044530679, 10.02568377965941131156381558075, 11.36728551044568371256457106668, 12.37684176393323517382467092549, 13.46624154362216435889269132504