L(s) = 1 | + (2.14 − 1.23i)2-s + (−1.72 − 0.0890i)3-s + (2.06 − 3.58i)4-s + (0.771 + 0.445i)5-s + (−3.82 + 1.95i)6-s + (−0.850 + 0.491i)7-s − 5.29i·8-s + (2.98 + 0.308i)9-s + 2.20·10-s + (−2.49 + 1.44i)11-s + (−3.89 + 6.01i)12-s + (−3.41 + 1.14i)13-s + (−1.21 + 2.10i)14-s + (−1.29 − 0.839i)15-s + (−2.42 − 4.19i)16-s + 5.34·17-s + ⋯ |
L(s) = 1 | + (1.51 − 0.875i)2-s + (−0.998 − 0.0514i)3-s + (1.03 − 1.79i)4-s + (0.344 + 0.199i)5-s + (−1.56 + 0.796i)6-s + (−0.321 + 0.185i)7-s − 1.87i·8-s + (0.994 + 0.102i)9-s + 0.697·10-s + (−0.753 + 0.435i)11-s + (−1.12 + 1.73i)12-s + (−0.947 + 0.318i)13-s + (−0.325 + 0.563i)14-s + (−0.334 − 0.216i)15-s + (−0.605 − 1.04i)16-s + 1.29·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.385 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.385 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40922 - 0.938450i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40922 - 0.938450i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.72 + 0.0890i)T \) |
| 13 | \( 1 + (3.41 - 1.14i)T \) |
good | 2 | \( 1 + (-2.14 + 1.23i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.771 - 0.445i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.850 - 0.491i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.49 - 1.44i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 5.34T + 17T^{2} \) |
| 19 | \( 1 - 7.19iT - 19T^{2} \) |
| 23 | \( 1 + (-2.31 + 4.01i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.971 + 1.68i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (8.73 + 5.04i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4.82iT - 37T^{2} \) |
| 41 | \( 1 + (2.39 + 1.38i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.45 + 4.25i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.82 + 2.20i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6.30T + 53T^{2} \) |
| 59 | \( 1 + (-2.74 - 1.58i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.76 - 4.78i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.15 - 1.81i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.69iT - 71T^{2} \) |
| 73 | \( 1 - 9.33iT - 73T^{2} \) |
| 79 | \( 1 + (2.37 + 4.11i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.78 + 2.76i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 17.5iT - 89T^{2} \) |
| 97 | \( 1 + (0.213 - 0.123i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.91469816392560748654831980626, −12.42305721335060319421509492702, −11.66304181645479617214426715246, −10.37076656093484690611254100403, −9.975290593671165224290819515469, −7.37850315703351970785999267324, −5.95545638890156674057079294959, −5.30308442319878733756674050975, −3.95799080245064928222463911627, −2.18429954315169107360635852950,
3.32331454542003528481934627020, 5.09529454885261917655112867936, 5.41274136841263335712468635347, 6.80154877953018790742543384412, 7.60740301532725961865432871417, 9.638258185231627356551331128076, 10.98633128462004338642768042396, 12.06522909169268896466291205425, 12.97609455236706868750917834232, 13.48139672516641389202311642644