L(s) = 1 | + (−0.784 + 0.452i)2-s + (1.66 − 0.460i)3-s + (−0.589 + 1.02i)4-s + (1.94 + 1.12i)5-s + (−1.10 + 1.11i)6-s + (−2.97 + 1.71i)7-s − 2.87i·8-s + (2.57 − 1.53i)9-s − 2.03·10-s + (3.20 − 1.84i)11-s + (−0.514 + 1.97i)12-s + (0.351 + 3.58i)13-s + (1.55 − 2.69i)14-s + (3.76 + 0.977i)15-s + (0.124 + 0.214i)16-s − 4.21·17-s + ⋯ |
L(s) = 1 | + (−0.554 + 0.320i)2-s + (0.963 − 0.265i)3-s + (−0.294 + 0.510i)4-s + (0.868 + 0.501i)5-s + (−0.449 + 0.456i)6-s + (−1.12 + 0.649i)7-s − 1.01i·8-s + (0.858 − 0.512i)9-s − 0.642·10-s + (0.965 − 0.557i)11-s + (−0.148 + 0.570i)12-s + (0.0975 + 0.995i)13-s + (0.415 − 0.720i)14-s + (0.970 + 0.252i)15-s + (0.0310 + 0.0537i)16-s − 1.02·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.689 - 0.724i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.689 - 0.724i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.957267 + 0.410698i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.957267 + 0.410698i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.66 + 0.460i)T \) |
| 13 | \( 1 + (-0.351 - 3.58i)T \) |
good | 2 | \( 1 + (0.784 - 0.452i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.94 - 1.12i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.97 - 1.71i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.20 + 1.84i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 4.21T + 17T^{2} \) |
| 19 | \( 1 + 4.25iT - 19T^{2} \) |
| 23 | \( 1 + (-1.89 + 3.27i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.18 + 2.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (6.37 + 3.67i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.49iT - 37T^{2} \) |
| 41 | \( 1 + (6.86 + 3.96i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.450 + 0.779i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.80 - 2.77i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 7.59T + 53T^{2} \) |
| 59 | \( 1 + (-4.44 - 2.56i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.50 - 11.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.7 - 6.75i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.65iT - 71T^{2} \) |
| 73 | \( 1 - 5.45iT - 73T^{2} \) |
| 79 | \( 1 + (5.46 + 9.47i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.465 + 0.268i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 5.75iT - 89T^{2} \) |
| 97 | \( 1 + (5.87 - 3.39i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.49107156545091226207821703312, −13.07426304107862626787839918356, −11.73319637879754192067246102983, −9.952728676839495909420975267732, −9.097951473642473871499542452683, −8.738993521100839561617763979971, −6.91617479351308405201288242627, −6.46349799337274418705150121467, −3.90817296472796277278895598477, −2.53697279939410730977316605982,
1.72295543123498472015543982165, 3.67914876013593911457956688986, 5.32599373527335684059814418127, 6.86455718668087813120121539190, 8.454034912647726025969702301497, 9.504686665092798056131391408041, 9.780258316377928525007366455403, 10.83121685063368374694325914066, 12.76336373259862910330285331826, 13.40143230107982246341748762757