L(s) = 1 | + (−0.929 + 0.536i)2-s + (−0.744 + 1.56i)3-s + (−0.423 + 0.733i)4-s + (−1.10 − 0.638i)5-s + (−0.147 − 1.85i)6-s + (−0.890 + 0.514i)7-s − 3.05i·8-s + (−1.89 − 2.32i)9-s + 1.37·10-s + (−4.03 + 2.33i)11-s + (−0.831 − 1.20i)12-s + (2.29 + 2.77i)13-s + (0.552 − 0.956i)14-s + (1.82 − 1.25i)15-s + (0.794 + 1.37i)16-s − 0.476·17-s + ⋯ |
L(s) = 1 | + (−0.657 + 0.379i)2-s + (−0.429 + 0.902i)3-s + (−0.211 + 0.366i)4-s + (−0.494 − 0.285i)5-s + (−0.0602 − 0.756i)6-s + (−0.336 + 0.194i)7-s − 1.08i·8-s + (−0.630 − 0.776i)9-s + 0.433·10-s + (−1.21 + 0.702i)11-s + (−0.240 − 0.348i)12-s + (0.637 + 0.770i)13-s + (0.147 − 0.255i)14-s + (0.470 − 0.323i)15-s + (0.198 + 0.344i)16-s − 0.115·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00406366 + 0.354491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00406366 + 0.354491i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.744 - 1.56i)T \) |
| 13 | \( 1 + (-2.29 - 2.77i)T \) |
good | 2 | \( 1 + (0.929 - 0.536i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.10 + 0.638i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.890 - 0.514i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (4.03 - 2.33i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 0.476T + 17T^{2} \) |
| 19 | \( 1 - 6.69iT - 19T^{2} \) |
| 23 | \( 1 + (0.479 - 0.831i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.68 - 8.12i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.66 - 0.963i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4.94iT - 37T^{2} \) |
| 41 | \( 1 + (-1.31 - 0.762i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.31 + 2.27i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.92 - 3.41i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 0.582T + 53T^{2} \) |
| 59 | \( 1 + (-3.64 - 2.10i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.71 + 8.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.01 - 1.16i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.35iT - 71T^{2} \) |
| 73 | \( 1 + 12.8iT - 73T^{2} \) |
| 79 | \( 1 + (-6.45 - 11.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.86 + 5.11i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6.85iT - 89T^{2} \) |
| 97 | \( 1 + (-14.9 + 8.63i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.21147626893074935690491266604, −12.72469528412278761826623006668, −12.05952600772119765578667293123, −10.62960510651221389809108492552, −9.759210770572216062166277644827, −8.739595920772435876039900361536, −7.79696557528602302388448689288, −6.33966400025001686200110119595, −4.76373210523942172655253227736, −3.57573180191110194802208780593,
0.49801548062322619528807714181, 2.73535719804955112267915682791, 5.14359834264630205777446493130, 6.33266655504946320374128419827, 7.78628089420482503990761837681, 8.531935831581019726093918670248, 10.10244844319366097153866197163, 10.99281481827203080697054975390, 11.63677796525137708686243627845, 13.27146479839547112420057908282