Properties

Label 2-116886-1.1-c1-0-24
Degree $2$
Conductor $116886$
Sign $-1$
Analytic cond. $933.339$
Root an. cond. $30.5506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2·5-s − 6-s + 7-s − 8-s + 9-s + 2·10-s + 12-s − 13-s − 14-s − 2·15-s + 16-s + 3·17-s − 18-s − 19-s − 2·20-s + 21-s − 23-s − 24-s − 25-s + 26-s + 27-s + 28-s + 3·29-s + 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.288·12-s − 0.277·13-s − 0.267·14-s − 0.516·15-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.229·19-s − 0.447·20-s + 0.218·21-s − 0.208·23-s − 0.204·24-s − 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.188·28-s + 0.557·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116886 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116886 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116886\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(933.339\)
Root analytic conductor: \(30.5506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{116886} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116886,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 7 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.81369736601055, −13.45750316196357, −12.75989844097706, −12.14294831985685, −12.00332442680756, −11.33905088480338, −10.96554061134601, −10.27697449257175, −9.941456794895020, −9.417175682104815, −8.845468583866955, −8.204051448619022, −8.100388100240693, −7.591621847802624, −6.971663863407937, −6.632105360367803, −5.764827207580813, −5.285704096596139, −4.476317878156642, −4.095200385498586, −3.358980397831073, −2.946728511864385, −2.166999502720476, −1.579688373310903, −0.8181048386853851, 0, 0.8181048386853851, 1.579688373310903, 2.166999502720476, 2.946728511864385, 3.358980397831073, 4.095200385498586, 4.476317878156642, 5.285704096596139, 5.764827207580813, 6.632105360367803, 6.971663863407937, 7.591621847802624, 8.100388100240693, 8.204051448619022, 8.845468583866955, 9.417175682104815, 9.941456794895020, 10.27697449257175, 10.96554061134601, 11.33905088480338, 12.00332442680756, 12.14294831985685, 12.75989844097706, 13.45750316196357, 13.81369736601055

Graph of the $Z$-function along the critical line