Properties

Label 2-116886-1.1-c1-0-19
Degree $2$
Conductor $116886$
Sign $-1$
Analytic cond. $933.339$
Root an. cond. $30.5506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2·5-s − 6-s − 7-s − 8-s + 9-s + 2·10-s + 12-s + 2·13-s + 14-s − 2·15-s + 16-s − 2·17-s − 18-s + 4·19-s − 2·20-s − 21-s − 23-s − 24-s − 25-s − 2·26-s + 27-s − 28-s + 2·29-s + 2·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.894·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.288·12-s + 0.554·13-s + 0.267·14-s − 0.516·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.917·19-s − 0.447·20-s − 0.218·21-s − 0.208·23-s − 0.204·24-s − 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.188·28-s + 0.371·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116886 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116886 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116886\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(933.339\)
Root analytic conductor: \(30.5506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{116886} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116886,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99366978550196, −13.14281293530971, −13.07746800317922, −12.18291383443693, −11.85606750386823, −11.41856129813366, −10.94359260451885, −10.28734368977436, −9.845270194720397, −9.503272311887739, −8.740708349676192, −8.372809795478881, −8.172909176583990, −7.315053128948080, −7.107312158261627, −6.561690914262707, −5.864527658296385, −5.284844530219823, −4.504619359027052, −3.974329172257895, −3.306957550146718, −3.082307250091578, −2.165266391469003, −1.576935898843137, −0.7680166924394386, 0, 0.7680166924394386, 1.576935898843137, 2.165266391469003, 3.082307250091578, 3.306957550146718, 3.974329172257895, 4.504619359027052, 5.284844530219823, 5.864527658296385, 6.561690914262707, 7.107312158261627, 7.315053128948080, 8.172909176583990, 8.372809795478881, 8.740708349676192, 9.503272311887739, 9.845270194720397, 10.28734368977436, 10.94359260451885, 11.41856129813366, 11.85606750386823, 12.18291383443693, 13.07746800317922, 13.14281293530971, 13.99366978550196

Graph of the $Z$-function along the critical line