Properties

Label 2-116160-1.1-c1-0-219
Degree $2$
Conductor $116160$
Sign $-1$
Analytic cond. $927.542$
Root an. cond. $30.4555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 2·7-s + 9-s + 2·13-s + 15-s − 2·19-s + 2·21-s + 25-s + 27-s − 8·31-s + 2·35-s − 2·37-s + 2·39-s − 2·43-s + 45-s − 3·49-s − 6·53-s − 2·57-s − 12·59-s + 2·61-s + 2·63-s + 2·65-s − 4·67-s − 2·73-s + 75-s − 10·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.554·13-s + 0.258·15-s − 0.458·19-s + 0.436·21-s + 1/5·25-s + 0.192·27-s − 1.43·31-s + 0.338·35-s − 0.328·37-s + 0.320·39-s − 0.304·43-s + 0.149·45-s − 3/7·49-s − 0.824·53-s − 0.264·57-s − 1.56·59-s + 0.256·61-s + 0.251·63-s + 0.248·65-s − 0.488·67-s − 0.234·73-s + 0.115·75-s − 1.12·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(927.542\)
Root analytic conductor: \(30.4555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{116160} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 116160,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83305502525532, −13.43085150519020, −12.94064969660928, −12.49863009140565, −11.94979294545377, −11.28103572555884, −10.92250684768677, −10.51144557772399, −9.857879211838025, −9.414662087351189, −8.791312177684774, −8.587797236343680, −7.889772165097269, −7.508597818363402, −6.923097189653605, −6.271243395613903, −5.845733993001610, −5.160751256105796, −4.669041854030654, −4.121980931195899, −3.399093395921987, −3.001861348901528, −2.006822759105976, −1.817933833640624, −1.073249210508209, 0, 1.073249210508209, 1.817933833640624, 2.006822759105976, 3.001861348901528, 3.399093395921987, 4.121980931195899, 4.669041854030654, 5.160751256105796, 5.845733993001610, 6.271243395613903, 6.923097189653605, 7.508597818363402, 7.889772165097269, 8.587797236343680, 8.791312177684774, 9.414662087351189, 9.857879211838025, 10.51144557772399, 10.92250684768677, 11.28103572555884, 11.94979294545377, 12.49863009140565, 12.94064969660928, 13.43085150519020, 13.83305502525532

Graph of the $Z$-function along the critical line