Properties

Label 2-116-116.39-c1-0-6
Degree $2$
Conductor $116$
Sign $0.495 - 0.868i$
Analytic cond. $0.926264$
Root an. cond. $0.962426$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.38 + 0.304i)2-s + (−0.677 + 1.93i)3-s + (1.81 + 0.840i)4-s + (−0.936 − 0.213i)5-s + (−1.52 + 2.46i)6-s + (−1.14 − 2.38i)7-s + (2.25 + 1.71i)8-s + (−0.948 − 0.756i)9-s + (−1.22 − 0.580i)10-s + (−1.04 − 0.117i)11-s + (−2.85 + 2.94i)12-s + (3.43 − 2.73i)13-s + (−0.859 − 3.64i)14-s + (1.04 − 1.67i)15-s + (2.58 + 3.05i)16-s + (−2.30 − 2.30i)17-s + ⋯
L(s)  = 1  + (0.976 + 0.215i)2-s + (−0.391 + 1.11i)3-s + (0.907 + 0.420i)4-s + (−0.419 − 0.0956i)5-s + (−0.622 + 1.00i)6-s + (−0.433 − 0.901i)7-s + (0.795 + 0.605i)8-s + (−0.316 − 0.252i)9-s + (−0.388 − 0.183i)10-s + (−0.313 − 0.0353i)11-s + (−0.825 + 0.850i)12-s + (0.951 − 0.758i)13-s + (−0.229 − 0.973i)14-s + (0.270 − 0.431i)15-s + (0.646 + 0.762i)16-s + (−0.559 − 0.559i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.495 - 0.868i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.495 - 0.868i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(116\)    =    \(2^{2} \cdot 29\)
Sign: $0.495 - 0.868i$
Analytic conductor: \(0.926264\)
Root analytic conductor: \(0.962426\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{116} (39, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 116,\ (\ :1/2),\ 0.495 - 0.868i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.29588 + 0.752749i\)
\(L(\frac12)\) \(\approx\) \(1.29588 + 0.752749i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.38 - 0.304i)T \)
29 \( 1 + (1.11 - 5.26i)T \)
good3 \( 1 + (0.677 - 1.93i)T + (-2.34 - 1.87i)T^{2} \)
5 \( 1 + (0.936 + 0.213i)T + (4.50 + 2.16i)T^{2} \)
7 \( 1 + (1.14 + 2.38i)T + (-4.36 + 5.47i)T^{2} \)
11 \( 1 + (1.04 + 0.117i)T + (10.7 + 2.44i)T^{2} \)
13 \( 1 + (-3.43 + 2.73i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (2.30 + 2.30i)T + 17iT^{2} \)
19 \( 1 + (-0.0184 + 0.00646i)T + (14.8 - 11.8i)T^{2} \)
23 \( 1 + (-2.77 + 0.633i)T + (20.7 - 9.97i)T^{2} \)
31 \( 1 + (5.46 + 8.70i)T + (-13.4 + 27.9i)T^{2} \)
37 \( 1 + (-1.09 - 9.74i)T + (-36.0 + 8.23i)T^{2} \)
41 \( 1 + (7.23 - 7.23i)T - 41iT^{2} \)
43 \( 1 + (-3.00 - 1.88i)T + (18.6 + 38.7i)T^{2} \)
47 \( 1 + (-0.163 + 1.45i)T + (-45.8 - 10.4i)T^{2} \)
53 \( 1 + (-2.32 + 10.1i)T + (-47.7 - 22.9i)T^{2} \)
59 \( 1 - 9.95iT - 59T^{2} \)
61 \( 1 + (2.25 + 0.788i)T + (47.6 + 38.0i)T^{2} \)
67 \( 1 + (-6.72 + 8.43i)T + (-14.9 - 65.3i)T^{2} \)
71 \( 1 + (-8.00 - 10.0i)T + (-15.7 + 69.2i)T^{2} \)
73 \( 1 + (-0.169 - 0.106i)T + (31.6 + 65.7i)T^{2} \)
79 \( 1 + (-0.148 - 1.31i)T + (-77.0 + 17.5i)T^{2} \)
83 \( 1 + (4.39 - 9.12i)T + (-51.7 - 64.8i)T^{2} \)
89 \( 1 + (6.71 - 4.21i)T + (38.6 - 80.1i)T^{2} \)
97 \( 1 + (-11.3 + 3.98i)T + (75.8 - 60.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55216455757513069346248300739, −13.00256288530776665680096935659, −11.46941067003744556136860897978, −10.83933823396053295402926848399, −9.857908209301332339091975375045, −8.131792819134230595772726275114, −6.86939194147524560017288850756, −5.48361217077257794250379178591, −4.35520357640368273431993351454, −3.41139566712933814359303408175, 1.99132678236549007981106801407, 3.78560387260806199070969226469, 5.60512838252621282345316087703, 6.48913595209447475036101861684, 7.47087481149933095497121485538, 9.038664035698351209893488441209, 10.78718997162283318438157025325, 11.67484640266100939399655353709, 12.46977470398928121636340296916, 13.13322531523388801866771207449

Graph of the $Z$-function along the critical line