Properties

Label 2-115920-1.1-c1-0-71
Degree $2$
Conductor $115920$
Sign $-1$
Analytic cond. $925.625$
Root an. cond. $30.4240$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s − 4·11-s + 6·17-s + 23-s + 25-s − 8·29-s + 8·31-s + 35-s − 2·37-s + 2·41-s − 8·43-s + 49-s + 4·55-s − 10·59-s + 12·67-s − 4·71-s + 4·77-s − 10·79-s + 2·83-s − 6·85-s + 10·89-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s − 1.20·11-s + 1.45·17-s + 0.208·23-s + 1/5·25-s − 1.48·29-s + 1.43·31-s + 0.169·35-s − 0.328·37-s + 0.312·41-s − 1.21·43-s + 1/7·49-s + 0.539·55-s − 1.30·59-s + 1.46·67-s − 0.474·71-s + 0.455·77-s − 1.12·79-s + 0.219·83-s − 0.650·85-s + 1.05·89-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115920\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(925.625\)
Root analytic conductor: \(30.4240\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{115920} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 115920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
23 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.77195208721579, −13.27796908546014, −12.94009060902003, −12.28872412588082, −12.08319407108844, −11.36380986830312, −10.98244756541168, −10.37309744342079, −9.917343198104811, −9.648443450467347, −8.830668649947665, −8.387600755756684, −7.798085247056913, −7.526695434098550, −6.983867670244248, −6.225439276117954, −5.817585844481279, −5.137796839333649, −4.842171834780693, −4.017193305232508, −3.397827569111898, −3.038363251969188, −2.359947672979897, −1.567629255582173, −0.7519450923366256, 0, 0.7519450923366256, 1.567629255582173, 2.359947672979897, 3.038363251969188, 3.397827569111898, 4.017193305232508, 4.842171834780693, 5.137796839333649, 5.817585844481279, 6.225439276117954, 6.983867670244248, 7.526695434098550, 7.798085247056913, 8.387600755756684, 8.830668649947665, 9.648443450467347, 9.917343198104811, 10.37309744342079, 10.98244756541168, 11.36380986830312, 12.08319407108844, 12.28872412588082, 12.94009060902003, 13.27796908546014, 13.77195208721579

Graph of the $Z$-function along the critical line