Properties

Label 2-1155-1.1-c1-0-25
Degree $2$
Conductor $1155$
Sign $-1$
Analytic cond. $9.22272$
Root an. cond. $3.03689$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 5-s + 2·6-s + 7-s + 9-s − 2·10-s − 11-s − 2·12-s − 2·13-s − 2·14-s − 15-s − 4·16-s − 3·17-s − 2·18-s + 19-s + 2·20-s − 21-s + 2·22-s − 7·23-s + 25-s + 4·26-s − 27-s + 2·28-s + 29-s + 2·30-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.447·5-s + 0.816·6-s + 0.377·7-s + 1/3·9-s − 0.632·10-s − 0.301·11-s − 0.577·12-s − 0.554·13-s − 0.534·14-s − 0.258·15-s − 16-s − 0.727·17-s − 0.471·18-s + 0.229·19-s + 0.447·20-s − 0.218·21-s + 0.426·22-s − 1.45·23-s + 1/5·25-s + 0.784·26-s − 0.192·27-s + 0.377·28-s + 0.185·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1155 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1155 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1155\)    =    \(3 \cdot 5 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(9.22272\)
Root analytic conductor: \(3.03689\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1155,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 9 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 5 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - 11 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 - 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.580913403159408107746538839399, −8.525863371755079766633113323917, −7.969170568653515044214463691545, −7.02803943705769353382088003020, −6.28400126867765721727742786785, −5.16897274933370109786717977716, −4.30419949362677255982283333002, −2.50495161201074940955654386464, −1.47308385103957437581999459253, 0, 1.47308385103957437581999459253, 2.50495161201074940955654386464, 4.30419949362677255982283333002, 5.16897274933370109786717977716, 6.28400126867765721727742786785, 7.02803943705769353382088003020, 7.969170568653515044214463691545, 8.525863371755079766633113323917, 9.580913403159408107746538839399

Graph of the $Z$-function along the critical line