L(s) = 1 | + (1.32 + 3.19i)5-s + (2.32 + 2.32i)7-s + (−1.47 − 3.55i)11-s + (4.49 + 1.86i)13-s + 4.93·17-s + (1.98 − 4.79i)19-s + (−1.08 − 1.08i)23-s + (−4.91 + 4.91i)25-s + (−3.43 − 1.42i)29-s + 8.82i·31-s + (−4.35 + 10.5i)35-s + (1.94 − 0.804i)37-s + (−5.87 + 5.87i)41-s + (2.44 − 1.01i)43-s − 1.61i·47-s + ⋯ |
L(s) = 1 | + (0.591 + 1.42i)5-s + (0.880 + 0.880i)7-s + (−0.443 − 1.07i)11-s + (1.24 + 0.516i)13-s + 1.19·17-s + (0.455 − 1.09i)19-s + (−0.227 − 0.227i)23-s + (−0.982 + 0.982i)25-s + (−0.637 − 0.263i)29-s + 1.58i·31-s + (−0.736 + 1.77i)35-s + (0.319 − 0.132i)37-s + (−0.917 + 0.917i)41-s + (0.372 − 0.154i)43-s − 0.236i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.414 - 0.909i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.414 - 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.106380615\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.106380615\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.32 - 3.19i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (-2.32 - 2.32i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.47 + 3.55i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-4.49 - 1.86i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 - 4.93T + 17T^{2} \) |
| 19 | \( 1 + (-1.98 + 4.79i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (1.08 + 1.08i)T + 23iT^{2} \) |
| 29 | \( 1 + (3.43 + 1.42i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 - 8.82iT - 31T^{2} \) |
| 37 | \( 1 + (-1.94 + 0.804i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (5.87 - 5.87i)T - 41iT^{2} \) |
| 43 | \( 1 + (-2.44 + 1.01i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + 1.61iT - 47T^{2} \) |
| 53 | \( 1 + (5.62 - 2.32i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (7.67 - 3.17i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-3.16 + 7.65i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (3.31 + 1.37i)T + (47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (2.13 - 2.13i)T - 71iT^{2} \) |
| 73 | \( 1 + (1.81 + 1.81i)T + 73iT^{2} \) |
| 79 | \( 1 + 1.42T + 79T^{2} \) |
| 83 | \( 1 + (1.04 + 0.431i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (0.708 + 0.708i)T + 89iT^{2} \) |
| 97 | \( 1 - 12.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06415161161999737470764443523, −9.050291580355751436208665649583, −8.367921069616973377820366111822, −7.47275858182480703946981342450, −6.44200379619761046449617166099, −5.84992082916003850511839671657, −5.01999530229848435866591177203, −3.43515061186510278567794820088, −2.79121002091539978835891763525, −1.56245541525318523643392540175,
1.07680634203583795683621704861, 1.79435897777319581041888132292, 3.65211178179520080145019439181, 4.52036491521862182674483369932, 5.37644907281700188044597155581, 5.97587868856679359978434325450, 7.58937763454423836858327373663, 7.87034564416355799932501994913, 8.794947126998766463071040887692, 9.764489598892082611870302084720