L(s) = 1 | + (1.12 + 2.71i)5-s + (−3.03 − 3.03i)7-s + (0.616 + 1.48i)11-s + (3.35 + 1.38i)13-s − 4.76·17-s + (−1.13 + 2.73i)19-s + (4.11 + 4.11i)23-s + (−2.55 + 2.55i)25-s + (8.16 + 3.38i)29-s + 6.16i·31-s + (4.81 − 11.6i)35-s + (−9.38 + 3.88i)37-s + (0.169 − 0.169i)41-s + (−7.57 + 3.13i)43-s + 2.44i·47-s + ⋯ |
L(s) = 1 | + (0.502 + 1.21i)5-s + (−1.14 − 1.14i)7-s + (0.185 + 0.449i)11-s + (0.929 + 0.385i)13-s − 1.15·17-s + (−0.259 + 0.627i)19-s + (0.857 + 0.857i)23-s + (−0.511 + 0.511i)25-s + (1.51 + 0.628i)29-s + 1.10i·31-s + (0.814 − 1.96i)35-s + (−1.54 + 0.639i)37-s + (0.0265 − 0.0265i)41-s + (−1.15 + 0.478i)43-s + 0.355i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.137 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.137 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.278064517\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.278064517\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.12 - 2.71i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (3.03 + 3.03i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.616 - 1.48i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + (-3.35 - 1.38i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 + 4.76T + 17T^{2} \) |
| 19 | \( 1 + (1.13 - 2.73i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-4.11 - 4.11i)T + 23iT^{2} \) |
| 29 | \( 1 + (-8.16 - 3.38i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 - 6.16iT - 31T^{2} \) |
| 37 | \( 1 + (9.38 - 3.88i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-0.169 + 0.169i)T - 41iT^{2} \) |
| 43 | \( 1 + (7.57 - 3.13i)T + (30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 - 2.44iT - 47T^{2} \) |
| 53 | \( 1 + (1.99 - 0.824i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (-1.21 + 0.503i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (-1.04 + 2.52i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + (3.91 + 1.62i)T + (47.3 + 47.3i)T^{2} \) |
| 71 | \( 1 + (5.28 - 5.28i)T - 71iT^{2} \) |
| 73 | \( 1 + (1.57 + 1.57i)T + 73iT^{2} \) |
| 79 | \( 1 - 13.7T + 79T^{2} \) |
| 83 | \( 1 + (-3.31 - 1.37i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (6.99 + 6.99i)T + 89iT^{2} \) |
| 97 | \( 1 + 13.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27068112339904580348959213882, −9.356644786171868302366260139154, −8.464990520035725974680804236123, −7.09006081199192662130158767617, −6.75567000688003849426473879011, −6.23373704455275756065428019370, −4.77021462395367293746301940504, −3.62210129396617399131352648310, −3.02525438056124115437105415440, −1.53364940349144543143533886522,
0.55937009626138170340551522414, 2.15385641596630967693268528531, 3.19937974756054441674166305506, 4.47921869377534462292111409489, 5.39408861650352741768193228254, 6.17229477477050894794380333893, 6.77225150206357590413165646310, 8.507919212144355523772218806671, 8.695385637118329281246178112762, 9.324291322965652724857390457742