L(s) = 1 | + (0.0913 − 0.0378i)5-s + (3.05 + 3.05i)7-s + (−5.25 + 2.17i)11-s + (−1.57 + 3.79i)13-s + 2.56·17-s + (−2.64 − 1.09i)19-s + (−4.03 − 4.03i)23-s + (−3.52 + 3.52i)25-s + (−2.06 + 4.99i)29-s − 1.44i·31-s + (0.394 + 0.163i)35-s + (−2.07 − 5.01i)37-s + (−0.296 + 0.296i)41-s + (2.72 + 6.57i)43-s − 7.42i·47-s + ⋯ |
L(s) = 1 | + (0.0408 − 0.0169i)5-s + (1.15 + 1.15i)7-s + (−1.58 + 0.656i)11-s + (−0.436 + 1.05i)13-s + 0.622·17-s + (−0.605 − 0.250i)19-s + (−0.840 − 0.840i)23-s + (−0.705 + 0.705i)25-s + (−0.384 + 0.927i)29-s − 0.258i·31-s + (0.0666 + 0.0276i)35-s + (−0.341 − 0.824i)37-s + (−0.0463 + 0.0463i)41-s + (0.415 + 1.00i)43-s − 1.08i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.507 - 0.861i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.507 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.165055438\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.165055438\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-0.0913 + 0.0378i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-3.05 - 3.05i)T + 7iT^{2} \) |
| 11 | \( 1 + (5.25 - 2.17i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + (1.57 - 3.79i)T + (-9.19 - 9.19i)T^{2} \) |
| 17 | \( 1 - 2.56T + 17T^{2} \) |
| 19 | \( 1 + (2.64 + 1.09i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (4.03 + 4.03i)T + 23iT^{2} \) |
| 29 | \( 1 + (2.06 - 4.99i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + 1.44iT - 31T^{2} \) |
| 37 | \( 1 + (2.07 + 5.01i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (0.296 - 0.296i)T - 41iT^{2} \) |
| 43 | \( 1 + (-2.72 - 6.57i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + 7.42iT - 47T^{2} \) |
| 53 | \( 1 + (1.53 + 3.69i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-0.988 - 2.38i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (-10.4 - 4.32i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (-0.690 + 1.66i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (2.97 - 2.97i)T - 71iT^{2} \) |
| 73 | \( 1 + (-9.22 - 9.22i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.12T + 79T^{2} \) |
| 83 | \( 1 + (4.13 - 9.98i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-12.0 - 12.0i)T + 89iT^{2} \) |
| 97 | \( 1 + 18.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04036340445550335480577511242, −9.220696881264562036586152109683, −8.339951817868413138530966784152, −7.77727364255971946031798297844, −6.83091140923840060280454332024, −5.53856933773335714157383266095, −5.12803562322084277474379482278, −4.12406821565227681058266306106, −2.48104568382684979384159272269, −1.93873807550196192369070455103,
0.47465296117545333933074714137, 2.00635130906972477764343124331, 3.26716634128135356293974153070, 4.34056491250565302659680143648, 5.26621801863298361022483957406, 5.94879061833320986066640580652, 7.38910908466559507552230242630, 7.948562001151850142218803312118, 8.266677277749597264593467805441, 9.836479282953239759487227167606