Properties

Label 2-1152-9.7-c1-0-15
Degree $2$
Conductor $1152$
Sign $0.558 - 0.829i$
Analytic cond. $9.19876$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.69 − 0.359i)3-s + (1.74 + 3.01i)5-s + (−1.34 + 2.33i)7-s + (2.74 + 1.21i)9-s + (2.84 − 4.92i)11-s + (−1.76 − 3.04i)13-s + (−1.86 − 5.74i)15-s + 7.65·17-s + 2.02·19-s + (3.12 − 3.47i)21-s + (−0.0370 − 0.0642i)23-s + (−3.57 + 6.18i)25-s + (−4.20 − 3.05i)27-s + (−2.46 + 4.26i)29-s + (3.72 + 6.44i)31-s + ⋯
L(s)  = 1  + (−0.978 − 0.207i)3-s + (0.779 + 1.34i)5-s + (−0.510 + 0.883i)7-s + (0.913 + 0.406i)9-s + (0.857 − 1.48i)11-s + (−0.488 − 0.845i)13-s + (−0.481 − 1.48i)15-s + 1.85·17-s + 0.463·19-s + (0.682 − 0.758i)21-s + (−0.00773 − 0.0133i)23-s + (−0.714 + 1.23i)25-s + (−0.809 − 0.587i)27-s + (−0.456 + 0.791i)29-s + (0.668 + 1.15i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.558 - 0.829i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.558 - 0.829i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $0.558 - 0.829i$
Analytic conductor: \(9.19876\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (385, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1/2),\ 0.558 - 0.829i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.384377534\)
\(L(\frac12)\) \(\approx\) \(1.384377534\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.69 + 0.359i)T \)
good5 \( 1 + (-1.74 - 3.01i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + (1.34 - 2.33i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-2.84 + 4.92i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (1.76 + 3.04i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 - 7.65T + 17T^{2} \)
19 \( 1 - 2.02T + 19T^{2} \)
23 \( 1 + (0.0370 + 0.0642i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (2.46 - 4.26i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-3.72 - 6.44i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 5.00T + 37T^{2} \)
41 \( 1 + (-0.482 - 0.834i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-0.255 + 0.442i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (2.83 - 4.91i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 + (-4.47 - 7.75i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-1.46 + 2.52i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (1.56 + 2.71i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 8.19T + 71T^{2} \)
73 \( 1 - 5.21T + 73T^{2} \)
79 \( 1 + (0.716 - 1.24i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (1.74 - 3.01i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + (3.50 - 6.06i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.980258868266211320780314409839, −9.448231313289413495527523953128, −8.164550108558106207155139196601, −7.20396862254450120530160171913, −6.32329836375111737460277186834, −5.86423539340884046952342451544, −5.26133459447821630686237376775, −3.39697708621001259426110549621, −2.83926346425740697915326978378, −1.19825276066619953450317577348, 0.846884949998193348373297510134, 1.80186529329824185921418904981, 3.89696803061324049781504461681, 4.55272274297787269364910546771, 5.33277858159447507317296032087, 6.22533800353008164447869583305, 7.06029112962179092615185609511, 7.87216100042834514514940226366, 9.387789834838286918609324212610, 9.778943889629185930155853574106

Graph of the $Z$-function along the critical line