Properties

Label 2-1152-9.4-c1-0-29
Degree $2$
Conductor $1152$
Sign $0.939 + 0.342i$
Analytic cond. $9.19876$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.5 − 0.866i)3-s + (1 − 1.73i)5-s + (1 + 1.73i)7-s + (1.5 − 2.59i)9-s + (2.5 + 4.33i)11-s + (−2 + 3.46i)13-s − 3.46i·15-s + 17-s + 5·19-s + (3 + 1.73i)21-s + (2 − 3.46i)23-s + (0.500 + 0.866i)25-s − 5.19i·27-s + (3 + 5.19i)29-s + (7.5 + 4.33i)33-s + ⋯
L(s)  = 1  + (0.866 − 0.499i)3-s + (0.447 − 0.774i)5-s + (0.377 + 0.654i)7-s + (0.5 − 0.866i)9-s + (0.753 + 1.30i)11-s + (−0.554 + 0.960i)13-s − 0.894i·15-s + 0.242·17-s + 1.14·19-s + (0.654 + 0.377i)21-s + (0.417 − 0.722i)23-s + (0.100 + 0.173i)25-s − 0.999i·27-s + (0.557 + 0.964i)29-s + (1.30 + 0.753i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $0.939 + 0.342i$
Analytic conductor: \(9.19876\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1152} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :1/2),\ 0.939 + 0.342i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.638303362\)
\(L(\frac12)\) \(\approx\) \(2.638303362\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.5 + 0.866i)T \)
good5 \( 1 + (-1 + 1.73i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + (-1 - 1.73i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-2.5 - 4.33i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (2 - 3.46i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 - T + 17T^{2} \)
19 \( 1 - 5T + 19T^{2} \)
23 \( 1 + (-2 + 3.46i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-3 - 5.19i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 10T + 37T^{2} \)
41 \( 1 + (-1.5 + 2.59i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (4.5 + 7.79i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (4 + 6.92i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + 12T + 53T^{2} \)
59 \( 1 + (-3.5 + 6.06i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (2 + 3.46i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 + 13T + 73T^{2} \)
79 \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-6 - 10.3i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + (6.5 + 11.2i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.422407378600581589533706213669, −9.017510078621136817434569056754, −8.312340256855943237234880421254, −7.12222571070718409979944954488, −6.78122581230283263530123901787, −5.29909377841398454580362999555, −4.66981252003690900419935481202, −3.43447847891362849400522701933, −2.09441785705918153697506992538, −1.46895385339426385223304336900, 1.31441656201680360567380905189, 2.94574633124404475276512474120, 3.31469324502343981536153621659, 4.55091354842265803655492984900, 5.56131059307928788633747670112, 6.57004312260806554987150265198, 7.60229709452287359313201812630, 8.094096382755166649587472808428, 9.155121609230913338127624555655, 9.842255698011731244122718462807

Graph of the $Z$-function along the critical line