L(s) = 1 | + 4i·5-s − 92i·13-s − 94·17-s + 109·25-s + 284i·29-s + 396i·37-s + 230·41-s − 343·49-s − 572i·53-s + 468i·61-s + 368·65-s − 1.09e3·73-s − 376i·85-s − 1.67e3·89-s − 594·97-s + ⋯ |
L(s) = 1 | + 0.357i·5-s − 1.96i·13-s − 1.34·17-s + 0.871·25-s + 1.81i·29-s + 1.75i·37-s + 0.876·41-s − 49-s − 1.48i·53-s + 0.982i·61-s + 0.702·65-s − 1.76·73-s − 0.479i·85-s − 1.98·89-s − 0.621·97-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(−0.707−0.707i)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
67.9702 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :3/2), −0.707−0.707i)
|
Particular Values
L(2) |
≈ |
0.6566325527 |
L(21) |
≈ |
0.6566325527 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−4iT−125T2 |
| 7 | 1+343T2 |
| 11 | 1−1.33e3T2 |
| 13 | 1+92iT−2.19e3T2 |
| 17 | 1+94T+4.91e3T2 |
| 19 | 1−6.85e3T2 |
| 23 | 1+1.21e4T2 |
| 29 | 1−284iT−2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1−396iT−5.06e4T2 |
| 41 | 1−230T+6.89e4T2 |
| 43 | 1−7.95e4T2 |
| 47 | 1+1.03e5T2 |
| 53 | 1+572iT−1.48e5T2 |
| 59 | 1−2.05e5T2 |
| 61 | 1−468iT−2.26e5T2 |
| 67 | 1−3.00e5T2 |
| 71 | 1+3.57e5T2 |
| 73 | 1+1.09e3T+3.89e5T2 |
| 79 | 1+4.93e5T2 |
| 83 | 1−5.71e5T2 |
| 89 | 1+1.67e3T+7.04e5T2 |
| 97 | 1+594T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.846721667013930985143600456161, −8.770756777207221019181577247295, −8.186543443507164219810449822741, −7.18335257154799982672761882074, −6.47652226528099738896484356665, −5.44298612168964414983687634898, −4.67019392969899697858875913045, −3.34910024260917695180001711153, −2.66915897433095959557832077903, −1.18098686291335506144820966956,
0.16134030992495487365135090624, 1.65348811902961442924815887329, 2.57686930541565764485128091400, 4.19187371631371860693197531896, 4.47175676802858234722726450670, 5.81449674838299737723670751083, 6.63330759005090478821176952031, 7.36071712365127121825596315504, 8.475707962570768734630610448643, 9.145224804552795251189529639975