L(s) = 1 | − 6i·5-s + 21.1·7-s − 42.3i·11-s + 20i·13-s − 8·17-s + 84.6i·19-s + 169.·23-s + 89·25-s − 46i·29-s − 21.1·31-s − 126. i·35-s + 164i·37-s + 312·41-s − 423. i·43-s − 169.·47-s + ⋯ |
L(s) = 1 | − 0.536i·5-s + 1.14·7-s − 1.16i·11-s + 0.426i·13-s − 0.114·17-s + 1.02i·19-s + 1.53·23-s + 0.711·25-s − 0.294i·29-s − 0.122·31-s − 0.613i·35-s + 0.728i·37-s + 1.18·41-s − 1.50i·43-s − 0.525·47-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)(0.707+0.707i)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
67.9702 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :3/2), 0.707+0.707i)
|
Particular Values
L(2) |
≈ |
2.567375465 |
L(21) |
≈ |
2.567375465 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+6iT−125T2 |
| 7 | 1−21.1T+343T2 |
| 11 | 1+42.3iT−1.33e3T2 |
| 13 | 1−20iT−2.19e3T2 |
| 17 | 1+8T+4.91e3T2 |
| 19 | 1−84.6iT−6.85e3T2 |
| 23 | 1−169.T+1.21e4T2 |
| 29 | 1+46iT−2.43e4T2 |
| 31 | 1+21.1T+2.97e4T2 |
| 37 | 1−164iT−5.06e4T2 |
| 41 | 1−312T+6.89e4T2 |
| 43 | 1+423.iT−7.95e4T2 |
| 47 | 1+169.T+1.03e5T2 |
| 53 | 1+266iT−1.48e5T2 |
| 59 | 1−253.iT−2.05e5T2 |
| 61 | 1+132iT−2.26e5T2 |
| 67 | 1−507.iT−3.00e5T2 |
| 71 | 1+677.T+3.57e5T2 |
| 73 | 1+246T+3.89e5T2 |
| 79 | 1−232.T+4.93e5T2 |
| 83 | 1−973.iT−5.71e5T2 |
| 89 | 1−1.39e3T+7.04e5T2 |
| 97 | 1+302T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.032959481127559728152602678245, −8.579720491216612238277776743613, −7.84444744088947442729253045814, −6.86247919410912032856713318743, −5.77377340618477275039220994881, −5.05403635175349150163910024257, −4.18917185355927322950393102587, −3.04778070124184201568645686863, −1.68938816589699488749758997620, −0.76254989645313024606813594334,
1.01512033486156650575088197395, 2.20643780495507675980572054619, 3.15862577324839819390455785523, 4.63306543984598574957539009257, 4.94998026026571007814556191358, 6.26186390420236299262986898798, 7.23686578783479364261199594819, 7.65418099098983203744304805846, 8.788701521465357771514201068547, 9.428835738369168115366466927328